中文版 | English
题名

A SUMMARY OF PUGH-SHUB CONJECTURE WITH 2-DIMENSION CENTRAL BUNDLE

其他题名
Pugh-Shub 猜想在二维中心丛情况下的综述
姓名
姓名拼音
CHENG Long
学号
12032007
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
Maria Alejandra Rodriguez Hertz
导师单位
数学系
论文答辩日期
2022-05-05
论文提交日期
2022-06-22
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

In the last 30 years, there is a famous conjecture in the field of partially hyperbolic dynamics: Pugh-Shub conjecture. This conjecture claims that ergodicity abounds in partially hyperbolicity and has not been proved so far. This paper summarizes the proof of Pugh-Shub conjecture when the central dimension is 2. The proof cleverly used the topological tool blender.
The proof of Pugh shub conjecture is not easy. However, ergodicity has been proved to be dense in Ansov, and partially hyperbolic diffeomorphism has a extra central subbundle that neither expands nor contracts than Anosov diffeomorphism, which is called central bundle. Therefore, in recent twenty or thirty years, mathematicians have tried
to prove the strict version of Pugh-Shub conjecture by adding restrictions on the central bundle.
The idea of proof summarized in this paper has also been used by other mathematics workers, so this is indeed an innovative and enlightening proof.

其他摘要

在最近30 年间,在部分双曲领域有一个著名的猜想——Pugh-Shub 猜想。这个
猜想宣称遍历性在部分双曲中大量存在,并至今犹未证明。本文概述了Pugh-Shub猜想在中心维为2 时的证明。该证明巧妙地使用了混合子这个拓扑工具。
Pugh-Shub 猜想的证明并不容易。但遍历性已被证明在双曲中是稠密的,而部
分双曲比双曲多了一个既不扩张也不收缩的中心子丛,被称为中心丛。故近二三
十年间,数学家们都试图通过在中心丛上添加限制的方式去证明Pugh-Shub 猜想
的严格版本。
本文总结的证明思路在之后也被其他数学工作者所使用,故这的确是一个有
创新性、启发性的证明。

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] GRAYSON M, PUGH C, SHUB M. Stably ergodic diffeomorphisms[J/OL]. Annals of Mathematics,1994, 140(2): 295-329. http://www.jstor.org/stable/2118602.
[2] ANOSOV D V, SINAI Y G. Some Smooth Ergodic Systems[J/OL]. Russian Mathematical Surveys, 1967, 22(5): 103-167. DOI: 10.1070/RM1967v022n05ABEH001228.
[3] PUGH C, SHUB M. Stably ergodic dynamical systems and partial hyperbolicity[J/OL]. Journal of Complexity, 1997, 13(1): 125-179. https://www.sciencedirect.com/science/article/pii/S0885064X97904374. DOI: https://doi.org/10.1006/jcom.1997.0437.
[4] DOLGOPYAT D, WILKINSON A. Stable accessibility is C1 dense[C/OL]//Geometric Methods in Dynamics II, Astérisque 287. 2003: 33-60. https://smf.emath.fr/system/files/filepdf/smf_ast_287.pdf#page=55.
[5] HERTZ F R, HERTZ M, URES R. Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1d-center bundle[J/OL]. Inventiones Mathematicae, 2008, 172(2): 353-381. https://doi.org/10.1007/s00222-007-0100-z.
[6] HERTZ F R, HERTZ M A R, TAHZIBI A, et al. New criteria for ergodicity and nonuniform hyperbolicity[J/OL]. Duke Mathematical Journal, 2011, 160(3): 599 - 629. https://doi.org/10.1215/00127094-1444314.
[7] BURNS K, DOLGOPYAT D, PESIN Y. Partial hyperbolicity, lyapunov exponents and stable ergodicity[J/OL]. Journal of Statistical Physics, 2002, 108(5-6): 927-942. https://dio.org/10.1023/A:1019779128351.
[8] PARRY W. Ergodic problems[J/OL]. Nature, 1969, 223(5201): 108-109. https://doi.org/10.1038/223108a0.
[9] BONATTI C, DíAZ L J. Persistent nonhyperbolic transitive diffeomorphisms[J/OL]. Annals of Mathematics, 1996, 143(2): 357-396. http://www.jstor.org/stable/2118647.
[10] HERTZ F R, HERTZ M, TAHZIBI A, et al. Creation of blenders in the conservative setting [J/OL]. Nonlinearity, 2010, 23(2): 211-223. https://doi.org/10.1088/0951-7715/23/2/001.
[11] BARAVIERA A T, BONATTI C. Removing zero lyapunov exponents[J/OL]. Ergodic Theory and Dynamical Systems, 2003, 23(6): 1655–1670. https://doi.org/10.1017/S0143385702001773.
[12] BOCHI J, VIANA M. The lyapunov exponents of generic volume-preserving and symplectic maps[J/OL]. Annals of Mathematics, 2009, 161(3): 1423-1485. https://doi.org/10.4007/annals.2005.161.1423.
[13] ZHOU Y. The local 𝑐1-density of stable ergodicity[J/OL]. Discrete and Continuous Dynamical Systems, 2013, 33(7): 2621-2629. https://www.aimsciences.org/article/doi/10.3934/dcds.2013.33.2621.
[14] AVILA A, CROVISIER S, WILKINSON A. 𝑐1 density of stable ergodicity[J/OL]. Advances in Mathematics, 2021, 379: 107496. https://www.sciencedirect.com/science/article/pii/S0001870820305247. DOI: https://doi.org/10.1016/j.aim.2020.107496.
[15] LIANG C, SUN W, YANG J. Some results on perturbations to lyapunov exponents[J/OL].Discrete and Continuous Dynamical Systems, 2010, 32(12): 4287-4305. https://www.aimsciences.org/article/doi/10.3934/dcds.2012.32.4287.

所在学位评定分委会
数学系
国内图书分类号
O192
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/340455
专题理学院_数学系
推荐引用方式
GB/T 7714
Cheng L. A SUMMARY OF PUGH-SHUB CONJECTURE WITH 2-DIMENSION CENTRAL BUNDLE[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032007-成龙-数学系.pdf(882KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[成龙]的文章
百度学术
百度学术中相似的文章
[成龙]的文章
必应学术
必应学术中相似的文章
[成龙]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。