中文版 | English
题名

ERGODIC HOMOCLINIC CLASS

其他题名
遍历同宿类
姓名
姓名拼音
FANG Qiuyu
学号
12032888
学位类型
硕士
学位专业
070101 基础数学
学科门类/专业学位类别
07 理学
导师
Maria Alejandra Rodriguez Hertz
导师单位
数学系
论文答辩日期
2022-05-05
论文提交日期
2022-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

We want to introduce a class of points in a closed Riemannian manifold, which is an ergodic component. It is called the ergodic homoclinic class. This class is built on diffeomorphisms on Riemann manifolds, and the definition of ergodic homoclinit class depends on hyperbolic periodic points of diffeomorphisms where the unstable manifolds and stable manifolds of all points in it transversely intersect the stable and unstable man ifolds of points on the orbit of the hyperbolic periodic point respectively. This paper is a summary of the ergodic homoclinic subclass, including its preliminaries, how to prove its ergodicity, its other properties.

关键词
语种
英语
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] HOPF E. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung[M].1939.
[2] ANOSOV D V. Geodesic flows on closed Riemannian manifolds of negative curvature[J]. TrudyMatematicheskogo Instituta Imeni VA Steklova, 1967, 90: 3-210.
[3] ANOSOV D V, SINAI Y G. Some smooth ergodic systems[J]. Russian Mathematical Surveys,1967, 22(5): 103.
[4] HERTZ F R, HERTZ M R, TAHZIBI A, et al. New criteria for ergodicity and nonuniformhyperbolicity[J]. Duke Mathematical Journal, 2011, 160(3): 599-629.
[5] PUGH C, SHUB M. Stable ergodicity and partial hyperbolicity[C]//International Conferenceon Dynamical Systems (Montevideo, 1995): volume 362. 1996: 182-187.
[6] PUGH C, SHUB M. Stable ergodicity and julienne quasi-conformality[J]. Journal of the Euro pean Mathematical Society, 2000, 2(1): 1-52.
[7] RODRIGUEZ-HERTZ F, RODRIGUEZ-HERTZ M, URES R. Accessibility and stable er godicity for partially hyperbolic diffeomorphisms with 1D-center bundle[J]. arXiv preprintmath/0610864, 2006.
[8] BURNS K, WILKINSON A. On the ergodicity of partially hyperbolic systems[J]. Annals ofMathematics, 2010: 451-489.
[9] HERTZ F R, HERTZ M R, URES R. A survey of partially hyperbolic dynamics[J]. Partiallyhyperbolic dynamics, laminations, and Teichmüller flow, 2007, 51: 35-87.
[10] NÚÑEZ G, RODRIGUEZ HERTZ J. Stable minimality of expanding foliations[J]. Journal ofDynamics and Differential Equations, 2021, 33(4): 2075-2089.
[11] NUÑEZ G, HERTZ J R. Minimality and stable Bernouliness in dimension 3[J]. arXiv preprintarXiv:1905.04414, 2019.
[12] JONES F. Lebesgue integration on Euclidean space[M]. Jones & Bartlett Learning, 2001.
[13] TAO T. An introduction to measure theory: volume 126[M]. American Mathematical SocietyProvidence, 2011.
[14] WALTERS P. An introduction to ergodic theory: volume 79[M]. Springer Science & BusinessMedia, 2000.
[15] MANÉ R. Ergodic theory and differentiable dynamics: volume 8[M]. Springer Science &Business Media, 2012.
[16] PUGH C, SHUB M. Ergodic attractors[J]. Transactions of the American Mathematical Society,1989, 312(1): 1-54.
[17] LEDRAPPIER F, YOUNG L S. The metric entropy of diffeomorphisms: Part I: Characteriza tion of measures satisfying Pesin’s entropy formula[J]. Annals of Mathematics, 1985: 509-539.
[18] BARREIRA L, BARREIRA L M, PESIN Y B. Lyapunov exponents and smooth ergodic theory:volume 23[M]. American Mathematical Soc., 2002.
[19] KATOK A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[J]. Publica tions Mathématiques de l’IHÉS, 1980, 51: 137-173.
[20] KATOK A, HASSELBLATT B. Introduction to the modern theory of dynamical systems:number 54[M]. Cambridge university press, 1997.
[21] PESIN Y B. Characteristic Lyapunov exponents and smooth ergodic theory[J]. Russian Math ematical Surveys, 1977, 32(4): 55.
[22] BRIN M I, PESIN J B. Partially hyperbolic dynamical systems[J]. Mathematics of the USSR Izvestiya, 1974, 8(1): 177.
[23] DOLGOPYAT D, WILKINSON A. Stable accessibility is C^ 1 dense[J]. Astérisque, 2003,287: 33-60.
[24] BURNS K, DOLGOPYAT D, PESIN Y. Partial hyperbolicity, Lyapunov exponents and stableergodicity[J]. Journal of statistical physics, 2002, 108(5): 927-942.
[25] PALIS J J, DE MELO W. Geometric theory of dynamical systems: an introduction[M]. SpringerScience & Business Media, 2012.
[26] NEWHOUSE S, PALIS J. Bifurcations of Morse–Smale dynamical systems[M]//Dynamicalsystems. Elsevier, 1973: 303-366.

所在学位评定分委会
数学系
国内图书分类号
TM301.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/340504
专题理学院_数学系
推荐引用方式
GB/T 7714
Fang QY. ERGODIC HOMOCLINIC CLASS[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032888-方秋宇-数学系.pdf(698KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[方秋宇]的文章
百度学术
百度学术中相似的文章
[方秋宇]的文章
必应学术
必应学术中相似的文章
[方秋宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。