[1] HOPF E. Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung[M].1939.
[2] ANOSOV D V. Geodesic flows on closed Riemannian manifolds of negative curvature[J]. TrudyMatematicheskogo Instituta Imeni VA Steklova, 1967, 90: 3-210.
[3] ANOSOV D V, SINAI Y G. Some smooth ergodic systems[J]. Russian Mathematical Surveys,1967, 22(5): 103.
[4] HERTZ F R, HERTZ M R, TAHZIBI A, et al. New criteria for ergodicity and nonuniformhyperbolicity[J]. Duke Mathematical Journal, 2011, 160(3): 599-629.
[5] PUGH C, SHUB M. Stable ergodicity and partial hyperbolicity[C]//International Conferenceon Dynamical Systems (Montevideo, 1995): volume 362. 1996: 182-187.
[6] PUGH C, SHUB M. Stable ergodicity and julienne quasi-conformality[J]. Journal of the Euro pean Mathematical Society, 2000, 2(1): 1-52.
[7] RODRIGUEZ-HERTZ F, RODRIGUEZ-HERTZ M, URES R. Accessibility and stable er godicity for partially hyperbolic diffeomorphisms with 1D-center bundle[J]. arXiv preprintmath/0610864, 2006.
[8] BURNS K, WILKINSON A. On the ergodicity of partially hyperbolic systems[J]. Annals ofMathematics, 2010: 451-489.
[9] HERTZ F R, HERTZ M R, URES R. A survey of partially hyperbolic dynamics[J]. Partiallyhyperbolic dynamics, laminations, and Teichmüller flow, 2007, 51: 35-87.
[10] NÚÑEZ G, RODRIGUEZ HERTZ J. Stable minimality of expanding foliations[J]. Journal ofDynamics and Differential Equations, 2021, 33(4): 2075-2089.
[11] NUÑEZ G, HERTZ J R. Minimality and stable Bernouliness in dimension 3[J]. arXiv preprintarXiv:1905.04414, 2019.
[12] JONES F. Lebesgue integration on Euclidean space[M]. Jones & Bartlett Learning, 2001.
[13] TAO T. An introduction to measure theory: volume 126[M]. American Mathematical SocietyProvidence, 2011.
[14] WALTERS P. An introduction to ergodic theory: volume 79[M]. Springer Science & BusinessMedia, 2000.
[15] MANÉ R. Ergodic theory and differentiable dynamics: volume 8[M]. Springer Science &Business Media, 2012.
[16] PUGH C, SHUB M. Ergodic attractors[J]. Transactions of the American Mathematical Society,1989, 312(1): 1-54.
[17] LEDRAPPIER F, YOUNG L S. The metric entropy of diffeomorphisms: Part I: Characteriza tion of measures satisfying Pesin’s entropy formula[J]. Annals of Mathematics, 1985: 509-539.
[18] BARREIRA L, BARREIRA L M, PESIN Y B. Lyapunov exponents and smooth ergodic theory:volume 23[M]. American Mathematical Soc., 2002.
[19] KATOK A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[J]. Publica tions Mathématiques de l’IHÉS, 1980, 51: 137-173.
[20] KATOK A, HASSELBLATT B. Introduction to the modern theory of dynamical systems:number 54[M]. Cambridge university press, 1997.
[21] PESIN Y B. Characteristic Lyapunov exponents and smooth ergodic theory[J]. Russian Math ematical Surveys, 1977, 32(4): 55.
[22] BRIN M I, PESIN J B. Partially hyperbolic dynamical systems[J]. Mathematics of the USSR Izvestiya, 1974, 8(1): 177.
[23] DOLGOPYAT D, WILKINSON A. Stable accessibility is C^ 1 dense[J]. Astérisque, 2003,287: 33-60.
[24] BURNS K, DOLGOPYAT D, PESIN Y. Partial hyperbolicity, Lyapunov exponents and stableergodicity[J]. Journal of statistical physics, 2002, 108(5): 927-942.
[25] PALIS J J, DE MELO W. Geometric theory of dynamical systems: an introduction[M]. SpringerScience & Business Media, 2012.
[26] NEWHOUSE S, PALIS J. Bifurcations of Morse–Smale dynamical systems[M]//Dynamicalsystems. Elsevier, 1973: 303-366.
修改评论