[1] 赵冰, 刘志民, 袁益明, 等. SoftCOM AI, 自动驾驶电信网络解决方案[J]. 电信科学, 2019, 35(4): 103-113.
[2] 华为. 品质宽带智能家宽运维,重塑智慧运营、极致体验新时代[EB/OL]. 2019. http: //www.sdnfv.org.cn/article/content/view?id=253786.
[3] 华为技术有限公司. ODN 的逻辑拓扑信息的获取方法、装置、设备和存储介质: CN110838928A[P]. 2020.02.25.
[4] 华为技术有限公司. 拓扑识别方法、装置及系统: CN111818403A[P]. 2020.10.23.
[5] 华为技术有限公司. 网络拓扑信息的获取方法、装置、设备及存储介质: CN111836134A [P]. 2020.10.27.
[6] 华为技术有限公司. 一种获取无源网络拓扑信息的方法及相关设备: CN111884832A[P]. 2020.11.03.
[7] 中兴通讯. 中兴通讯自主进化网络白皮书[EB/OL]. 2020. https://res-www.zte.com.cn/medi ares/zte/Files/PDF/white_book/202008171748.pdf?la=zh-CN.
[8] YI B, FALOUTSOS C. Fast Time Sequence Indexing for Arbitrary Lp Norms[C]//VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt. Morgan Kaufmann, 2000: 385-394.
[9] GOLAY X, KOLLIAS S, STOLL G, et al. A new correlation-based fuzzy logic clustering algorithm for FMRI[J]. Magnetic resonance in medicine, 1998, 40(2): 249-260.
[10] BERNDT D J, CLIFFORD J. Using Dynamic Time Warping to Find Patterns in Time Series[C]//Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop, Seattle, Washington, USA, July 1994. Technical Report WS-94-03. AAAI Press, 1994: 359-370.
[11] DAHLHAUS R. On the Kullback-Leibler information divergence of locally stationary processes [J]. Stochastic Processes and their Applications, 1996, 62(1): 139-168.
[12] PAPARRIZOS J, GRAVANO L. k-Shape: Efficient and Accurate Clustering of Time Series[C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. ACM, 2015: 1855-1870.
[13] FAYYAD U M, REINA C, BRADLEY P S. Initialization of Iterative Refinement Clustering Algorithms[C]//Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), New York City, New York, USA, August 27-31, 1998. AAAI Press, 1998: 194-198.
[14] KARYPIS G, HAN E, KUMAR V. Chameleon: Hierarchical Clustering Using Dynamic Modeling[J]. Computer, 1999, 32(8): 68-75.
[15] GUHA S, RASTOGI R, SHIM K. CURE: An Efficient Clustering Algorithm for Large Databases[C]//SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA. ACM Press, 1998: 73-84.
[16] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: An Efficient Data Clustering Method for Very Large Databases[C]//Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996. ACM Press, 1996: 103- 114.
[17] OATES T, SCHMILL M D, COHEN P R. A Method for Clustering the Experiences of a Mobile Robot that Accords with Human Judgments[C]//Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA. AAAI Press / The MIT Press, 2000: 846-851.
[18] ESTER M, KRIEGEL H, SANDER J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. AAAI Press, 1996: 226-231.
[19] ANKERST M, BREUNIG M M, KRIEGEL H, et al. OPTICS: Ordering Points To Identify the Clustering Structure[C]//SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA. ACM Press, 1999: 49-60.
[20] CHANDRAKALA S, SEKHAR C C. A density based method for multivariate time series clustering in kernel feature space[C]//2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). 2008: 1885-1890.
[21] DING R, WANG Q, DANG Y, et al. YADING: Fast Clustering of Large-Scale Time Series Data [J]. Proc. VLDB Endow., 2015, 8(5): 473-484.
[22] KEOGH E J, CHAKRABARTI K, PAZZANI M J, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases[J]. Knowl. Inf. Syst., 2001, 3(3): 263-286.
[23] LI Z, ZHAO Y, LIU R, et al. Robust and Rapid Clustering of KPIs for Large-Scale Anomaly Detection[C]//26th IEEE/ACM International Symposium on Quality of Service, IWQoS 2018, Banff, AB, Canada, June 4-6, 2018. IEEE, 2018: 1-10.
[24] SU Y, ZHAO Y, XIA W, et al. CoFlux: robustly correlating KPIs by fluctuations for service troubleshooting[C]//Proceedings of the International Symposium on Quality of Service, IWQoS 2019, Phoenix, AZ, USA, June 24-25, 2019. ACM, 2019: 13:1-13:10.
[25] POLLARD K S, VAN DER LAAN M J. A Method to Identify Significant Clusters in Gene Expression Data[J]. U.C. Berkeley Division of Biostatistics Working Paper Series, 2002.
[26] LI S, HONG D, WANG H. Relation Inference among Sensor Time Series in Smart Buildings with Metric Learning[C]//The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 2020: 4683-4690.
[27] HOFFER E, AILON N. Deep Metric Learning Using Triplet Network[C]//Similarity-Based Pattern Recognition - Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015, Proceedings: volume 9370. Springer, 2015: 84-92.
[28] CHE Z, HE X, XU K, et al. DECADE: a Deep Metric Learning Model for Multivariate Time Series[C]//KDD Workshop on Mining and Learning from Time Series. 2017.
[29] PEI W, TAX D M J, VAN DER MAATEN L. Modeling Time Series Similarity with Siamese Recurrent Networks[J/OL]. CoRR, 2016, abs/1603.04713. http://arxiv.org/abs/1603.04713.
[30] CHOPRA S, HADSELL R, LECUN Y. Learning a Similarity Metric Discriminatively, with Application to Face Verification[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA. IEEE Computer Society, 2005: 539-546.
[31] COSKUN H, JOSEPH TAN D, CONJETI S, et al. Human motion analysis with deep metric learning[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 667-683.
[32] DUDOIT S, FRIDLYAND J. Bagging to Improve the Accuracy of A Clustering Procedure[J]. Bioinform., 2003, 19(9): 1090-1099.
[33] FRED A L N. Finding Consistent Clusters in Data Partitions[C]//Multiple Classifier Systems, Second International Workshop, MCS 2001 Cambridge, UK, July 2-4, 2001, Proceedings: volume 2096. Springer, 2001: 309-318.
[34] FRED A L N, JAIN A K. Combining Multiple Clusterings Using Evidence Accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
[35] STREHL A, GHOSH J. Cluster Ensembles — A Knowledge Reuse Framework for Combining Multiple Partitions[J]. J. Mach. Learn. Res., 2002, 3: 583-617.
[36] FERN X Z, BRODLEY C E. Solving cluster ensemble problems by bipartite graph partitioning [C]//BRODLEY C E. Proceedings of the Twenty-first International Conference on Machine Learning (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004: volume 69. ACM, 2004.
[37] KARYPIS G, KUMAR V. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs[J]. SIAM Journal on scientific Computing, 1998, 20(1): 359-392.
[38] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]// Advances in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada]. MIT Press, 2001: 849-856.
[39] CHRIST M, BRAUN N, NEUFFER J, et al. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh–A Python package)[J]. Neurocomputing, 2018, 307: 72-77.
[40] MUSGRAVE K, BELONGIE S, LIM S N. PyTorch Metric Learning[A]. 2020. arXiv: 2008.09164.
[41] 薛东亮. 光网络宽带端到端判障系统的设计与实现[D/OL]. 哈尔滨理工大学, 2020. DOI: 10.27063/d.cnki.ghlgu.2020.000627.
[42] 王斐. PON 网络故障分析与维护建议[J]. 中国有线电视, 2020(11): 1279-1284. 6
修改评论