[1] 曾辉, 曾琪. 塞贝克效应及其应用[J]. 化学物理学报, 2004, 22(3): 52-54.
[2] 柳承恩. 珀耳帖效应对无序绝缘衬底上多晶硅激光再结晶的影响[J]. Journal of Semiconductors,1985, 6(5): 481-486.
[3] 赵素琴. 伯塞活脱气体的焦耳——汤姆逊效应[J]. 青海师专学报: 教育科学, 2005, 25(4):58-61.
[4] VINING C B. An inconvenient truth about thermoelectrics[J]. Nature Materials, 2009, 8: 83-85.
[5] 厉英, 王淑兰, 张大勇, 等. 热电材料的研究现状及发展[J]. 材料导报, 2005, (4): 23-25.
[6] WU H J, ZHAO L D, ZHENG F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3[J]. Nature Communications, 2014, 5.
[7] 徐亚东, 徐桂英, 葛昌纯. SiGe 系热电材料的研究动态[C]//材料导报编辑部. 2007 高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集. 四川成都: 《材料导报》杂志社, 2007: 122-124+127.
[8] LI H, SONG J, XIAO J, et al. Conductive Polymers: Synergistically Improved Molecular Doping and Carrier Mobility by Copolymerization of Donor–Acceptor and Donor–Donor Building Blocks for Thermoelectric Application[J]. Advanced Functional Materials, 2020, 30(40): 2070270.
[9] 王大刚, 王雷, 王文馨, 等. 聚噻吩及其衍生物热电材料研究进展[J]. 材料导报, 2012, 26:74-78.
[10] 梁安生. 基于噻唑单元D-A 型共轭聚合物的设计合成及其热电性能研究[D]. 深圳: 深圳大学, 2017.
[11] LIU J, VAN DER ZEE B, ALESSANDRI R, et al. N-type organic thermoelectrics: demonstration of ZT>0.3[J]. Nature Communications, 2020, 11: 5694.
[12] SAKURADA S, SHUTOH N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds[J]. Applied Physics Letters, 2005, 86(8): 082105.
[13] 张强, 李家荡, 胡良禄, 等. Mg3Sb2 基热电材料的研究进展[J]. 太原理工大学学报, 2021,52: 683-692.
[14] TAMAKI H, SATO H, KANNO T. Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance[J]. Advanced materials, 2016, 28.
[15] SHUAI J, MAO J, SONG S, et al. Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties[J]. Energy & Environmental Science, 2017, 10: 799-807.
[16] CHEN X, WU H, CUI J, et al. Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure[J]. Nano Energy, 2018, 52: 246-255.
[17] SONG S, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8: 25-33.
[18] 黄高飞. Bi2Se3 纳米热电材料的合成与物性研究[D]. 新疆: 新疆大学, 2016.
[19] 詹斌, 兰金叻, 刘耀春, 等. 氧化物热电材料研究进展[J]. 无机材料学报, 2014, 29: 237-244.
[20] ZHU J, PANDEY R. Silver tellurides: Structural, elastic, and optical properties of AgTe and Ag2Te[J]. Journal of Physics and Chemistry of Solids, 2019, 129: 41-45.
[21] KASHIDA S, WATANABE N, HASEGAWA T, et al. Electronic structure of Ag2Te, band calculation and photoelectron spectroscopy[J]. Solid State Ionics, 2002, 148: 193-201.
[22] FUJIKANE M, KUROSAKI K, MUTA H, et al. Electrical properties of α- and β-Ag2Te[J]. Journal of Alloys and Compounds, 2005, 387: 297-299.
[23] KARAKAYA I, THOMPSON W. The Ag-Te (Silver-Tellurium) System[J]. Journal of Phase Equilibria, 1991, 12: 56-63.
[24] FUJIKANE M, KUROSAKI K, MUTA H, et al. Thermoelectric properties of α- and β-Ag2Te[J]. Journal of Alloys and Compounds, 2005, 393(1): 299-301.
[25] VORONIN M V, OSADCHII E G, BRICHKINA E A. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag–Te and Ag–Te–O[J]. Physics and Chemistry of Minerals, 2017, 44: 639-653.
[26] KOBAYASHI M, ISHIKAWA K, TACHIBANA F, et al. Diffusion path and Haven’s ratio of mobile ions in α-Ag2Te[J]. Physical Review B, 1988, 38: 3050-3055.
[27] TACHIBANA F, KOBAYASHI M, OKAZAKI H. Residence time and density distribution of silver ions in α-Ag2Te by molecular-dynamics simulation[J]. Physical Review B, 1989, 40: 3360-3363.
[28] PEI Y, HEINZ N A, SNYDER G J. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te[J]. Journal of Materials Chemistry, 2011, 21: 18256-18260.
[29] JOOD P, CHETTY R, OHTA M. Structural stability enables high thermoelectric performance in room temperature Ag2Se[J]. Journal of Materials Chemistry A, 2020, 8: 13024-13037.
[30] KARAKAYA I, THOMPSON W T. The Ag-Se (Silver-Selenium) system[J]. Bulletin of Alloy Phase Diagrams, 1990, 11: 266.
[31] DRYMIOTIS F, DAY T W, BROWN D R, et al. Enhanced thermoelectric performance in the very low thermal conductivity Ag2Se0.5Te0.5[J]. Applied Physics Letters, 2013, 103(14): 143906.
[32] WIEGERS G A. The Crystal Structure of the Low-Temperature form of Silver Selenide[J]. American Mineralogist, 1971, 56(11-12): 1882-1888.
[33] SHIMOJO F, OKAZAKI H. Phase Transition in Superionic Conductor Ag2Se:A Molecular Dynamics Study[J]. Journal of the Physical Society of Japan, 1991, 60(11): 3745-3753.
[34] RINO J P, HORNOS Y M M, ANTONIO G A, et al. Structural and dynamical correlations in Ag2Se: A molecular dynamics study of superionic and molten phases[J]. The Journal of Chemical Physics, 1988, 89(12): 7542-7555.
[35] SAKUMA T, IIDA K, HONMA K, et al. X-Ray Diffraction Study on a Superionic Conductor: α-Ag2Se[J]. Journal of the Physical Society of Japan, 1977, 43(2): 538-543.
[36] HIRATA K, MATSUNAGA T, SINGH S, et al. High-Performance Solid-State Thermal Diode Consisting of Ag2(S, Se, Te)[J]. Journal of Electronic Materials, 2020, 49: 2895-2901.
[37] BEHLER J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials[J]. The Journal of Chemical Physics, 2011, 134(7): 074106.
[38] SHIMAMURA K, TAKESHITA Y, FUKUSHIMA S, et al. Computational and training requirements for interatomic potential based on artificial neural network for estimating low thermal conductivity of silver chalcogenides[J]. The Journal of Chemical Physics, 2020, 153(23): 234301.
[39] BARTÓK A P, PAYNE M C, KONDOR R, et al. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons[J]. Physical Review Letters, 2010, 104: 136403.
[40] BARTOK A, CSáNYI G. Gaussian Approximation Potentials: a brief tutorial introduction[J]. International Journal of Quantum Chemistry, 2015, 115.
[41] DERINGER V L, CARO M A, CSáNYI G. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science[J]. Advanced Materials, 2019, 31(46): 1902765.
[42] CSÁNYI G, WINFIELD S, KERMODE J R, et al. Expressive Programming for Computational Physics in Fortran 95+[J]. Computer Physics Communications, 2007.
[43] SHAPEEV A V. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials[J]. Multiscale Modeling & Simulation, 2016, 14(3): 1153-1173.
[44] ROSENBROCK C, GUBAEV K, SHAPEEV A, et al. Machine-learned Interatomic Potentials for Alloys and Alloy Phase Diagrams[J]. npj Computational Materials, 2019, 7: 24.
[45] NOVIKOV I S, GUBAEV K, PODRYABINKIN E V, et al. The MLIP package: moment tensor potentials with MPI and active learning[J]. Machine Learning: Science and Technology, 2021, 2(2): 025002.
[46] PODRYABINKIN E V, SHAPEEV A V. Active learning of linearly parametrized interatomic potentials[J]. Computational Materials Science, 2017, 140: 171-180.
[47] GOREINOV S A, OSELEDETS I V, SAVOSTYANOV D V, et al. How to Find a Good Submatrix[M/OL]. 2010: 247-256. DOI: 10.1142/9789812836021_0015.
[48] KROGH A, VEDELSBY J. Neural Network Ensembles, Cross Validation and Active Learning[C]//NIPS’94: Proceedings of the 7th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1994: 231–238.
[49] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas[J]. Physical Review, 1964, 136: B864-B871.
[50] JANAK J F. Proof that ∂𝐸∂𝑛𝑖= 𝜖 in density-functional theory[J]. Physical Review B, 1978, 18: 7165-7168.
[51] KOCH W, HOLTHAUSEN M C. A Chemist’s Guide to Density Functional Theory[M]. 2nd ed. New Jersey: John Wiley and Sons, 2001: 65-91.
[52] KURTH S, PERDEW J P, BLAHA P. Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs[J]. International Journal of Quantum Chemistry, 1999, 75(4-5): 889-909.
[53] KRYACHKO E S, LUDEñA E V. Density functional theory: Foundations reviewed[J]. Physics Reports, 2014, 544(2): 123-239.
[54] 冯真真. 几种Zintl 相化合物及MgAgSb 热电特性的理论研究[D]. 河南: 河南大学, 2016.
[55] YANG H, ZHU Y, DONG E, et al. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy[J]. Physical Review B, 2021, 104: 094310.
[56] GUBAEV K, PODRYABINKIN E V, HART G L, et al. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials[J]. Computational Materials Science, 2019, 156: 148-156.
[57] KOBAYASHI M, ISHIKAWA K, TACHIBANA F, et al. Diffusion path and Haven’s ratio of mobile ions in α-Ag2Te[J]. Physical Review B, 1988, 38: 3050-3055.
[58] SHIMOJO F, ANIYA M. Diffusion Mechanism of Ag ions in Superionic Conductor Ag2Se from Ab Initio Molecular-Dynamics Simulations[J]. Journal of the Physical Society of Japan, 2005, 74(4): 1224-1230.
[59] RAPAPORT D C. The Art of Molecular Dynamics Simulation[M]. 2nd ed. Cambridge University Press, 2004: 25-43.
[60] HAN Z, YANG X, LI W, et al. FourPhonon: An extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity[J]. Computer Physics Communications, 2022, 270: 108179.
[61] WANG Z, RUAN X. On the domain size effect of thermal conductivities from equilibrium and nonequilibrium molecular dynamics simulations[J]. Journal of Applied Physics, 2017, 121: 044301.
[62] KONG L T, BARTELS G, CAMPAñá C, et al. Implementation of Green’s function molecular dynamics: An extension to LAMMPS[J]. Computer Physics Communications, 2009, 180(6): 1004-1010.
[63] KONG L. Phonon dispersion measured directly from molecular dynamics simulations[J]. Computer Physics Communications, 2011, 182: 2201-2207.
[64] IKESHOJI T, HAFSKJOLD B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface[J]. Molecular Physics, 1994, 81(2): 251-261.
[65] JUND P, JULLIEN R. Molecular-Dynamics Calculation of the Thermal Conductivity of Vitreous Silica[J]. Physical Review B, 1999, 59.
[66] MüLLER-PLATHE F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity[J]. The Journal of Chemical Physics, 1997, 106(14): 6082-6085.
[67] KUBO R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems[J]. Journal of the Physical Society of Japan, 1957, 12(6): 570-586.
[68] GREEN M S. Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids[J]. The Journal of Chemical Physics, 1954, 22(3): 398-413.
[69] LI D, ZHANG B, MING H, et al. Liquid-Phase Manipulation Securing Enhanced ThermoelectricPerformance of Ag2Se[J]. ACS applied materials & interfaces, 2021, 13.
修改评论