[1] NG M, FLEMING T, ROBINSON M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J]. Lancet (London, England), 2014, 384(9945): 766-81.
[2] Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults [J]. Lancet (London, England), 2017, 390(10113): 2627-42.
[3] AFSHIN A, FOROUZANFAR M H, REITSMA M B, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years [J]. N Engl J Med, 2017, 377(1): 13-27.
[4] WANG L, ZHOU B, ZHAO Z, et al. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004-18 [J]. Lancet (London, England), 2021, 398(10294): 53-63.
[5] GONZáLEZ-MUNIESA P, MáRTINEZ-GONZáLEZ M-A, HU F B, et al. Obesity [J]. Nat Rev Dis Primers, 2017, 3: 17034.
[6] JAVED A, JUMEAN M, MURAD M H, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis [J]. Pediatr Obes, 2015, 10(3): 234-44.
[7] Obesity: preventing and managing the global epidemic. Report of a WHO consultation [J]. World Health Organ Tech Rep Ser, 2000, 894.
[8] SEABOLT L A, WELCH E B, SILVER H J. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease [J]. Annals of the New York Academy of Sciences, 2015, 1353: 41-59.
[9] HEYMSFIELD S B, EBBELING C B, ZHENG J, et al. Multi-component molecular-level body composition reference methods: evolving concepts and future directions [J]. Obes Rev, 2015, 16(4): 282-94.
[10] SELLAYAH D, CAGAMPANG F R, COX R D. On the evolutionary origins of obesity: a new hypothesis [J]. Endocrinology, 2014, 155(5): 1573-88.
[11] BLüHER M. Obesity: global epidemiology and pathogenesis [J]. Nat Rev Endocrinol, 2019, 15(5): 288-98.
[12] LUDWIG D S. Lifespan Weighed Down by Diet [J]. JAMA, 2016, 315(21): 2269-70.
[13] SAEED S, BONNEFOND A, MANZOOR J, et al. Erratum: Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population [J]. Obesity (Silver Spring), 2017, 25(4): 807.
[14] STEPHENS J M. The fat controller: adipocyte development [J]. PLoS Biol, 2012, 10(11): e1001436.
[15] KAHN C R, WANG G, LEE K Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome [J]. The Journal of clinical investigation, 2019, 129(10): 3990-4000.
[16] CANNON B, NEDERGAARD J. Brown adipose tissue: Function and physiological significance [J]. Physiol Rev, 2004, 84(1): 277-359.
[17] GHABEN A L, SCHERER P E. Adipogenesis and metabolic health [J]. Nat Rev Mol Cell Biol, 2019, 20(4): 242-58.
[18] LAFONTAN M, GIRARD J. Impact of visceral adipose tissue on liver metabolism. Part I: heterogeneity of adipose tissue and functional properties of visceral adipose tissue [J]. Diabetes Metab, 2008, 34(4 Pt 1): 317-27.
[19] MACOTELA Y, EMANUELLI B, MORI M A, et al. Intrinsic differences in adipocyte precursor cells from different white fat depots [J]. Diabetes, 2012, 61(7): 1691-9.
[20] LEE K Y, YAMAMOTO Y, BOUCHER J, et al. Shox2 is a molecular determinant of depot-specific adipocyte function [J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11409-14.
[21] USSAR S, BEZY O, BLüHER M, et al. Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine [J]. Diabetes, 2012, 61(9): 2289-98.
[22] CAO W, HUANG H, XIA T, et al. Homeobox a5 Promotes White Adipose Tissue Browning Through Inhibition of the Tenascin C/Toll-Like Receptor 4/Nuclear Factor Kappa B Inflammatory Signaling in Mice [J]. Front Immunol, 2018, 9: 647.
[23] MORI M, NAKAGAMI H, RODRIGUEZ-ARAUJO G, et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells [J]. PLoS Biol, 2012, 10(4): e1001314.
[24] POISSONNET C M, BURDI A R, BOOKSTEIN F L. Growth and development of human adipose tissue during early gestation [J]. Early Hum Dev, 1983, 8(1).
[25] POISSONNET C M, BURDI A R, GARN S M. The chronology of adipose tissue appearance and distribution in the human fetus [J]. Early Hum Dev, 1984, 10(1-2).
[26] MORENO-MENDEZ E, QUINTERO-FABIAN S, FERNANDEZ-MEJIA C, et al. Early-life programming of adipose tissue [J]. Nutr Res Rev, 2020, 33(2): 244-59.
[27] WANG Q A, TAO C, GUPTA R K, et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration [J]. Nature medicine, 2013, 19(10): 1338-44.
[28] MOTA DE Sá P, RICHARD A J, HANG H, et al. Transcriptional Regulation of Adipogenesis [J]. Compr Physiol, 2017, 7(2): 635-74.
[29] ROSEN E D, SARRAF P, TROY A E, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro [J]. Mol Cell, 1999, 4(4): 611-7.
[30] HE W, BARAK Y, HEVENER A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle [J]. Proc Natl Acad Sci U S A, 2003, 100(26): 15712-7.
[31] CHOU F-S, WANG P-S, KULP S, et al. Effects of thiazolidinediones on differentiation, proliferation, and apoptosis [J]. Mol Cancer Res, 2007, 5(6): 523-30.
[32] MAYERSON A B, HUNDAL R S, DUFOUR S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes [J]. Diabetes, 2002, 51(3): 797-802.
[33] JONES M E, THORBURN A W, BRITT K L, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity [J]. Proc Natl Acad Sci U S A, 2000, 97(23): 12735-40.
[34] RONG J X, QIU Y, HANSEN M K, et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone [J]. Diabetes, 2007, 56(7): 1751-60.
[35] HARVEY I, BOUDREAU A, STEPHENS J M. Adipose tissue in health and disease [J]. Open Biol, 2020, 10(12): 200291.
[36] CINTI S. The role of brown adipose tissue in human obesity [J]. Nutrition, metabolism, and cardiovascular diseases : NMCD, 2006, 16(8): 569-74.
[37] PETROVIC N, WALDEN T B, SHABALINA I G, et al. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes [J]. The Journal of biological chemistry, 2010, 285(10): 7153-64.
[38] SIDOSSIS L, KAJIMURA S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis [J]. The Journal of clinical investigation, 2015, 125(2): 478-86.
[39] MALISZEWSKA K, KRETOWSKI A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis [J]. International journal of molecular sciences, 2021, 22(4).
[40] MYERS M G, COWLEY M A, MüNZBERG H. Mechanisms of leptin action and leptin resistance [J]. Annu Rev Physiol, 2008, 70: 537-56.
[41] CHAN J L, MANTZOROS C S. Leptin and the hypothalamic-pituitary regulation of the gonadotropin-gonadal axis [J]. Pituitary, 2001, 4(1-2): 87-92.
[42] IIKUNI N, LAM Q L K, LU L, et al. Leptin and Inflammation [J]. Curr Immunol Rev, 2008, 4(2): 70-9.
[43] GOTO M, GOTO A, MORITA A, et al. Low-molecular-weight adiponectin and high-molecular-weight adiponectin levels in relation to diabetes [J]. Obesity (Silver Spring), 2014, 22(2): 401-7.
[44] YAMAUCHI T, KAMON J, MINOKOSHI Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nature medicine, 2002, 8(11): 1288-95.
[45] HOLLAND W L, MILLER R A, WANG Z V, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin [J]. Nature medicine, 2011, 17(1): 55-63.
[46] STEPPAN C M, BAILEY S T, BHAT S, et al. The hormone resistin links obesity to diabetes [J]. Nature, 2001, 409(6818): 307-12.
[47] STEPPAN C M, WANG J, WHITEMAN E L, et al. Activation of SOCS-3 by resistin [J]. Mol Cell Biol, 2005, 25(4): 1569-75.
[48] XU H, CAO H, XIAO G. Signaling via PINCH: Functions, binding partners and implications in human diseases [J]. Gene, 2016, 594(1): 10-5.
[49] REARDEN A. A new LIM protein containing an autoepitope homologous to "senescent cell antigen" [J]. Biochem Biophys Res Commun, 1994, 201(3): 1124-31.
[50] BRAUN A, BORDOY R, STANCHI F, et al. PINCH2 is a new five LIM domain protein, homologous to PINCHand localized to focal adhesions [J]. Exp Cell Res, 2003, 284(2): 239-50.
[51] WANG D, LI Y, WU C, et al. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression [J]. PloS one, 2011, 6(2): e17048.
[52] CAMPBELL I D, HUMPHRIES M J. Integrin structure, activation, and interactions [J]. Cold Spring Harb Perspect Biol, 2011, 3(3).
[53] FUKUDA T, CHEN K, SHI X, et al. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival [J]. The Journal of biological chemistry, 2003, 278(51): 51324-33.
[54] ZHANG Y, CHEN K, TU Y, et al. Distinct roles of two structurally closely related focal adhesion proteins, alpha-parvins and beta-parvins, in regulation of cell morphology and survival [J]. The Journal of biological chemistry, 2004, 279(40): 41695-705.
[55] VELYVIS A, VAYNBERG J, YANG Y, et al. Structural and functional insights into PINCH LIM4 domain-mediated integrin signaling [J]. Nat Struct Biol, 2003, 10(7): 558-64.
[56] VAYNBERG J, FUKUDA T, CHEN K, et al. Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility [J]. Mol Cell, 2005, 17(4): 513-23.
[57] KADRMAS J L, SMITH M A, CLARK K A, et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1 [J]. The Journal of cell biology, 2004, 167(6): 1019-24.
[58] DOUGHERTY G W, CHOPP T, QI S-M, et al. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions [J]. Exp Cell Res, 2005, 306(1): 168-79.
[59] GONZALEZ-NIEVES R, DESANTIS A I, CUTLER M L. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms [J]. J Cell Commun Signal, 2013, 7(4): 279-93.
[60] STANCHI F, BORDOY R, KUDLACEK O, et al. Consequences of loss of PINCH2 expression in mice [J]. J Cell Sci, 2005, 118(Pt 24): 5899-910.
[61] WANG-RODRIGUEZ J, DREILINGER A D, ALSHARABI G M, et al. The signaling adapter protein PINCH is up-regulated in the stroma of common cancers, notably at invasive edges [J]. Cancer, 2002, 95(6): 1387-95.
[62] CHEN K, TU Y, ZHANG Y, et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells [J]. The Journal of biological chemistry, 2008, 283(5): 2508-17.
[63] EKE I, KOCH U, HEHLGANS S, et al. PINCH1 regulates Akt1 activation and enhances radioresistance by inhibiting PP1alpha [J]. The Journal of clinical investigation, 2010, 120(7): 2516-27.
[64] KIM S-K, JANG H-R, KIM J-H, et al. The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration [J]. Biochem Biophys Res Commun, 2006, 349(3): 1032-40.
[65] LI Y, DAI C, WU C, et al. PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase [J]. J Am Soc Nephrol, 2007, 18(9): 2534-43.
[66] LEI Y M, FU X K, LI P Y, et al. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice [J]. Bone Res, 2020, 8(1).
[67] WANG Y S, YAN Q N, ZHAO Y R, et al. Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice [J]. Jci Insight, 2019, 4(22).
[68] PASPARAKIS M, VANDENABEELE P. Necroptosis and its role in inflammation [J]. Nature, 2015, 517(7534): 311-20.
[69] SINGH R, LETAI A, SAROSIEK K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins [J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-93.
[70] BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cell Mol Immunol, 2021, 18(5): 1106-21.
[71] KESAVARDHANA S, MALIREDDI R K S, KANNEGANTI T-D. Caspases in Cell Death, Inflammation, and Pyroptosis [J]. Annu Rev Immunol, 2020, 38: 567-95.
[72] RAMIREZ M L G, SALVESEN G S. A primer on caspase mechanisms [J]. Seminars in cell & developmental biology, 2018, 82: 79-85.
[73] HOLLER N, ZARU R, MICHEAU O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule [J]. Nat Immunol, 2000, 1(6): 489-95.
[74] HE S, LIANG Y, SHAO F, et al. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway [J]. Proc Natl Acad Sci U S A, 2011, 108(50): 20054-9.
[75] ZHAO J, JITKAEW S, CAI Z, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5322-7.
[76] MURPHY J M, CZABOTAR P E, HILDEBRAND J M, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism [J]. Immunity, 2013, 39(3): 443-53.
[77] WANG Z, JIANG H, CHEN S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways [J]. Cell, 2012, 148(1-2): 228-43.
[78] LUK C T, SHI S Y, CAI E P, et al. FAK signalling controls insulin sensitivity through regulation of adipocyte survival [J]. Nat Commun, 2017, 8.
[79] GAO H Q, GUO Y X, YAN Q N, et al. Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2 [J]. Jci Insight, 2019, 4(13)
修改评论