中文版 | English
题名

Pinch 蛋白在肥胖发生过程中的作用和机制探究

其他题名
The role and mechanism of Pinch protein in the pathogenesis of obesity
姓名
姓名拼音
DING Zhen
学号
11930167
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
曹惠玲
导师单位
生物化学系
论文答辩日期
2022-04-26
论文提交日期
2022-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

哺乳动物粘附因子Pinch蛋白可以激活整合素,促进细胞-细胞外基质的粘附和迁移,但其在脂肪组织及全身代谢中的作用仍不清楚。本项研究中我们发现高脂饮食饲养显著增加小鼠白色脂肪组织中Pinch1和Pinch2的表达。此外,在ob/ob小鼠和肥胖病人的白色脂肪组织中,Pinch1的表达显著上升。由于脂肪细胞特异性缺失Pinch1或者全身敲除Pinch2的小鼠没有任何显著的表型,并且Pinch1与Pinch2在功能上有代偿,本课题利用全身敲除Pinch2并在脂肪细胞敲除Pinch1的小鼠模型研究Pinch在脂肪组织中的功能。我们发现敲除小鼠在高脂饮食条件下表现出显著的体重和白色脂肪组织重量减少,但是在正常饮食条件下没有变化。Pinch缺失改善高脂饮食诱导的小鼠的葡萄糖不耐受、胰岛素抵抗和脂肪肝,并且轻微但是显著性地增加小鼠的能量消耗。同时Pinch缺失减小脂肪细胞体积、改变脂肪细胞体积分布、促进性腺白色脂肪组织的细胞凋亡并轻微促进皮下白色脂肪组织的细胞凋亡。体外研究表明Pinch缺失通过激活Bim/Caspase-8途径促进细胞凋亡。在体内脂肪细胞特异性敲除Caspase-8可以逆转Pinch缺失对小鼠肥胖、葡萄糖不耐受、胰岛素抵抗和脂肪肝的保护作用。在此,我们证明Pinch通过调控脂肪细胞凋亡发挥调节脂肪组织重量、葡萄糖和脂质代谢的功能。我们的研究发现为代谢性疾病例如肥胖和糖尿病的预防和治疗提供了潜在靶点。

其他摘要

The mammalian focal adhesion proteins Pinch activate integrins and promote cell-extracellular matrix adhesion and migration; however, their roles in adipose tissue and metabolism are unclear. Here we find that high-fat diet (HFD) feeding dramatically increases expression of Pinch1 and Pinch2 in white adipose tissue (WAT) in mice. Furthermore, expression of Pinch1 is largely upregulated in WAT in ob/ob mice and obese humans. While mice with loss of Pinch1 in adipocytes or global Pinch2 do not display any notable phenotypes and Pinch1 is compensatory in function with Pinch2, we use mice model with Pinch1 deletion in adipocytes and Pinch2 global knockout to study the function of Pinch1 in adipose tissue. Pinch deletion significantly decreases body weight and WAT mass in HFD-fed, but not normal chow diet–fed, mice. Pinch loss ameliorates HFD-induced glucose intolerance, insulin resistance and fatty liver. After HFD challenge, Pinch loss slightly but significantly accelerates energy expenditure. While Pinch loss decreases adipocyte size and alters adipocyte size distribution, it greatly accelerates cell apoptosis primarily in epididymal WAT and to a lesser extent in subcutaneous WAT. In vitro studies demonstrate that Pinch loss accelerates adipocyte apoptosis by activating the Bim/Caspase-8 pathway. In vivo, genetic ablation of Caspase-8 expression in adipocytes essentially abolishes the ameliorating effects of Pinch deficiency on obesity, glucose intolerance, insulin resistance and fatty liver in mice. Thus, our findings demonstrate a key role of Pinch in control of adipose mass, glucose, and fat metabolism via modulation of adipocyte apoptosis. We may define a potential target for the prevention and treatment of metabolic diseases, such as obesity and diabetes.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] NG M, FLEMING T, ROBINSON M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013 [J]. Lancet (London, England), 2014, 384(9945): 766-81.
[2] Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults [J]. Lancet (London, England), 2017, 390(10113): 2627-42.
[3] AFSHIN A, FOROUZANFAR M H, REITSMA M B, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years [J]. N Engl J Med, 2017, 377(1): 13-27.
[4] WANG L, ZHOU B, ZHAO Z, et al. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004-18 [J]. Lancet (London, England), 2021, 398(10294): 53-63.
[5] GONZáLEZ-MUNIESA P, MáRTINEZ-GONZáLEZ M-A, HU F B, et al. Obesity [J]. Nat Rev Dis Primers, 2017, 3: 17034.
[6] JAVED A, JUMEAN M, MURAD M H, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis [J]. Pediatr Obes, 2015, 10(3): 234-44.
[7] Obesity: preventing and managing the global epidemic. Report of a WHO consultation [J]. World Health Organ Tech Rep Ser, 2000, 894.
[8] SEABOLT L A, WELCH E B, SILVER H J. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease [J]. Annals of the New York Academy of Sciences, 2015, 1353: 41-59.
[9] HEYMSFIELD S B, EBBELING C B, ZHENG J, et al. Multi-component molecular-level body composition reference methods: evolving concepts and future directions [J]. Obes Rev, 2015, 16(4): 282-94.
[10] SELLAYAH D, CAGAMPANG F R, COX R D. On the evolutionary origins of obesity: a new hypothesis [J]. Endocrinology, 2014, 155(5): 1573-88.
[11] BLüHER M. Obesity: global epidemiology and pathogenesis [J]. Nat Rev Endocrinol, 2019, 15(5): 288-98.
[12] LUDWIG D S. Lifespan Weighed Down by Diet [J]. JAMA, 2016, 315(21): 2269-70.
[13] SAEED S, BONNEFOND A, MANZOOR J, et al. Erratum: Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population [J]. Obesity (Silver Spring), 2017, 25(4): 807.
[14] STEPHENS J M. The fat controller: adipocyte development [J]. PLoS Biol, 2012, 10(11): e1001436.
[15] KAHN C R, WANG G, LEE K Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome [J]. The Journal of clinical investigation, 2019, 129(10): 3990-4000.
[16] CANNON B, NEDERGAARD J. Brown adipose tissue: Function and physiological significance [J]. Physiol Rev, 2004, 84(1): 277-359.
[17] GHABEN A L, SCHERER P E. Adipogenesis and metabolic health [J]. Nat Rev Mol Cell Biol, 2019, 20(4): 242-58.
[18] LAFONTAN M, GIRARD J. Impact of visceral adipose tissue on liver metabolism. Part I: heterogeneity of adipose tissue and functional properties of visceral adipose tissue [J]. Diabetes Metab, 2008, 34(4 Pt 1): 317-27.
[19] MACOTELA Y, EMANUELLI B, MORI M A, et al. Intrinsic differences in adipocyte precursor cells from different white fat depots [J]. Diabetes, 2012, 61(7): 1691-9.
[20] LEE K Y, YAMAMOTO Y, BOUCHER J, et al. Shox2 is a molecular determinant of depot-specific adipocyte function [J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11409-14.
[21] USSAR S, BEZY O, BLüHER M, et al. Glypican-4 enhances insulin signaling via interaction with the insulin receptor and serves as a novel adipokine [J]. Diabetes, 2012, 61(9): 2289-98.
[22] CAO W, HUANG H, XIA T, et al. Homeobox a5 Promotes White Adipose Tissue Browning Through Inhibition of the Tenascin C/Toll-Like Receptor 4/Nuclear Factor Kappa B Inflammatory Signaling in Mice [J]. Front Immunol, 2018, 9: 647.
[23] MORI M, NAKAGAMI H, RODRIGUEZ-ARAUJO G, et al. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells [J]. PLoS Biol, 2012, 10(4): e1001314.
[24] POISSONNET C M, BURDI A R, BOOKSTEIN F L. Growth and development of human adipose tissue during early gestation [J]. Early Hum Dev, 1983, 8(1).
[25] POISSONNET C M, BURDI A R, GARN S M. The chronology of adipose tissue appearance and distribution in the human fetus [J]. Early Hum Dev, 1984, 10(1-2).
[26] MORENO-MENDEZ E, QUINTERO-FABIAN S, FERNANDEZ-MEJIA C, et al. Early-life programming of adipose tissue [J]. Nutr Res Rev, 2020, 33(2): 244-59.
[27] WANG Q A, TAO C, GUPTA R K, et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration [J]. Nature medicine, 2013, 19(10): 1338-44.
[28] MOTA DE Sá P, RICHARD A J, HANG H, et al. Transcriptional Regulation of Adipogenesis [J]. Compr Physiol, 2017, 7(2): 635-74.
[29] ROSEN E D, SARRAF P, TROY A E, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro [J]. Mol Cell, 1999, 4(4): 611-7.
[30] HE W, BARAK Y, HEVENER A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle [J]. Proc Natl Acad Sci U S A, 2003, 100(26): 15712-7.
[31] CHOU F-S, WANG P-S, KULP S, et al. Effects of thiazolidinediones on differentiation, proliferation, and apoptosis [J]. Mol Cancer Res, 2007, 5(6): 523-30.
[32] MAYERSON A B, HUNDAL R S, DUFOUR S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes [J]. Diabetes, 2002, 51(3): 797-802.
[33] JONES M E, THORBURN A W, BRITT K L, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity [J]. Proc Natl Acad Sci U S A, 2000, 97(23): 12735-40.
[34] RONG J X, QIU Y, HANSEN M K, et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone [J]. Diabetes, 2007, 56(7): 1751-60.
[35] HARVEY I, BOUDREAU A, STEPHENS J M. Adipose tissue in health and disease [J]. Open Biol, 2020, 10(12): 200291.
[36] CINTI S. The role of brown adipose tissue in human obesity [J]. Nutrition, metabolism, and cardiovascular diseases : NMCD, 2006, 16(8): 569-74.
[37] PETROVIC N, WALDEN T B, SHABALINA I G, et al. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes [J]. The Journal of biological chemistry, 2010, 285(10): 7153-64.
[38] SIDOSSIS L, KAJIMURA S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis [J]. The Journal of clinical investigation, 2015, 125(2): 478-86.
[39] MALISZEWSKA K, KRETOWSKI A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis [J]. International journal of molecular sciences, 2021, 22(4).
[40] MYERS M G, COWLEY M A, MüNZBERG H. Mechanisms of leptin action and leptin resistance [J]. Annu Rev Physiol, 2008, 70: 537-56.
[41] CHAN J L, MANTZOROS C S. Leptin and the hypothalamic-pituitary regulation of the gonadotropin-gonadal axis [J]. Pituitary, 2001, 4(1-2): 87-92.
[42] IIKUNI N, LAM Q L K, LU L, et al. Leptin and Inflammation [J]. Curr Immunol Rev, 2008, 4(2): 70-9.
[43] GOTO M, GOTO A, MORITA A, et al. Low-molecular-weight adiponectin and high-molecular-weight adiponectin levels in relation to diabetes [J]. Obesity (Silver Spring), 2014, 22(2): 401-7.
[44] YAMAUCHI T, KAMON J, MINOKOSHI Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nature medicine, 2002, 8(11): 1288-95.
[45] HOLLAND W L, MILLER R A, WANG Z V, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin [J]. Nature medicine, 2011, 17(1): 55-63.
[46] STEPPAN C M, BAILEY S T, BHAT S, et al. The hormone resistin links obesity to diabetes [J]. Nature, 2001, 409(6818): 307-12.
[47] STEPPAN C M, WANG J, WHITEMAN E L, et al. Activation of SOCS-3 by resistin [J]. Mol Cell Biol, 2005, 25(4): 1569-75.
[48] XU H, CAO H, XIAO G. Signaling via PINCH: Functions, binding partners and implications in human diseases [J]. Gene, 2016, 594(1): 10-5.
[49] REARDEN A. A new LIM protein containing an autoepitope homologous to "senescent cell antigen" [J]. Biochem Biophys Res Commun, 1994, 201(3): 1124-31.
[50] BRAUN A, BORDOY R, STANCHI F, et al. PINCH2 is a new five LIM domain protein, homologous to PINCHand localized to focal adhesions [J]. Exp Cell Res, 2003, 284(2): 239-50.
[51] WANG D, LI Y, WU C, et al. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression [J]. PloS one, 2011, 6(2): e17048.
[52] CAMPBELL I D, HUMPHRIES M J. Integrin structure, activation, and interactions [J]. Cold Spring Harb Perspect Biol, 2011, 3(3).
[53] FUKUDA T, CHEN K, SHI X, et al. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival [J]. The Journal of biological chemistry, 2003, 278(51): 51324-33.
[54] ZHANG Y, CHEN K, TU Y, et al. Distinct roles of two structurally closely related focal adhesion proteins, alpha-parvins and beta-parvins, in regulation of cell morphology and survival [J]. The Journal of biological chemistry, 2004, 279(40): 41695-705.
[55] VELYVIS A, VAYNBERG J, YANG Y, et al. Structural and functional insights into PINCH LIM4 domain-mediated integrin signaling [J]. Nat Struct Biol, 2003, 10(7): 558-64.
[56] VAYNBERG J, FUKUDA T, CHEN K, et al. Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility [J]. Mol Cell, 2005, 17(4): 513-23.
[57] KADRMAS J L, SMITH M A, CLARK K A, et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1 [J]. The Journal of cell biology, 2004, 167(6): 1019-24.
[58] DOUGHERTY G W, CHOPP T, QI S-M, et al. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions [J]. Exp Cell Res, 2005, 306(1): 168-79.
[59] GONZALEZ-NIEVES R, DESANTIS A I, CUTLER M L. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms [J]. J Cell Commun Signal, 2013, 7(4): 279-93.
[60] STANCHI F, BORDOY R, KUDLACEK O, et al. Consequences of loss of PINCH2 expression in mice [J]. J Cell Sci, 2005, 118(Pt 24): 5899-910.
[61] WANG-RODRIGUEZ J, DREILINGER A D, ALSHARABI G M, et al. The signaling adapter protein PINCH is up-regulated in the stroma of common cancers, notably at invasive edges [J]. Cancer, 2002, 95(6): 1387-95.
[62] CHEN K, TU Y, ZHANG Y, et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells [J]. The Journal of biological chemistry, 2008, 283(5): 2508-17.
[63] EKE I, KOCH U, HEHLGANS S, et al. PINCH1 regulates Akt1 activation and enhances radioresistance by inhibiting PP1alpha [J]. The Journal of clinical investigation, 2010, 120(7): 2516-27.
[64] KIM S-K, JANG H-R, KIM J-H, et al. The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration [J]. Biochem Biophys Res Commun, 2006, 349(3): 1032-40.
[65] LI Y, DAI C, WU C, et al. PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase [J]. J Am Soc Nephrol, 2007, 18(9): 2534-43.
[66] LEI Y M, FU X K, LI P Y, et al. LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice [J]. Bone Res, 2020, 8(1).
[67] WANG Y S, YAN Q N, ZHAO Y R, et al. Focal adhesion proteins Pinch1 and Pinch2 regulate bone homeostasis in mice [J]. Jci Insight, 2019, 4(22).
[68] PASPARAKIS M, VANDENABEELE P. Necroptosis and its role in inflammation [J]. Nature, 2015, 517(7534): 311-20.
[69] SINGH R, LETAI A, SAROSIEK K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins [J]. Nat Rev Mol Cell Biol, 2019, 20(3): 175-93.
[70] BERTHELOOT D, LATZ E, FRANKLIN B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cell Mol Immunol, 2021, 18(5): 1106-21.
[71] KESAVARDHANA S, MALIREDDI R K S, KANNEGANTI T-D. Caspases in Cell Death, Inflammation, and Pyroptosis [J]. Annu Rev Immunol, 2020, 38: 567-95.
[72] RAMIREZ M L G, SALVESEN G S. A primer on caspase mechanisms [J]. Seminars in cell & developmental biology, 2018, 82: 79-85.
[73] HOLLER N, ZARU R, MICHEAU O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule [J]. Nat Immunol, 2000, 1(6): 489-95.
[74] HE S, LIANG Y, SHAO F, et al. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway [J]. Proc Natl Acad Sci U S A, 2011, 108(50): 20054-9.
[75] ZHAO J, JITKAEW S, CAI Z, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5322-7.
[76] MURPHY J M, CZABOTAR P E, HILDEBRAND J M, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism [J]. Immunity, 2013, 39(3): 443-53.
[77] WANG Z, JIANG H, CHEN S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways [J]. Cell, 2012, 148(1-2): 228-43.
[78] LUK C T, SHI S Y, CAI E P, et al. FAK signalling controls insulin sensitivity through regulation of adipocyte survival [J]. Nat Commun, 2017, 8.
[79] GAO H Q, GUO Y X, YAN Q N, et al. Lipoatrophy and metabolic disturbance in mice with adipose-specific deletion of kindlin-2 [J]. Jci Insight, 2019, 4(13)

所在学位评定分委会
医学院
国内图书分类号
Q519
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342752
专题南方科技大学医学院
推荐引用方式
GB/T 7714
丁镇. Pinch 蛋白在肥胖发生过程中的作用和机制探究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930167-丁镇-南方科技大学医学(3879KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[丁镇]的文章
百度学术
百度学术中相似的文章
[丁镇]的文章
必应学术
必应学术中相似的文章
[丁镇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。