[1] YANG X, WANG T, LIANG J, et al. Survey on the novel hybrid aquatic–aerial amphi-bious aircraft: Aquatic unmanned aerial vehicle (aquauav)[J]. Progress in Aerospace Sciences, 2015, 74: 131-151.
[2] 云忠, 温猛, 罗自荣, 等. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54: 407-415.
[3] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016,9: 152-157.
[4] 刘龙. 变体全柔性翼扑动推进水下航行器设计与研究[D]. 南京: 南京航空航天大学, 2017.
[5] WHALEY, P E, STEWART, et al. Path from urgent operational need to program of record[J]. Defense AR journal, 2014, 21: 526.
[6] VIGLIOTTI V. Demonstration of submarine control of an unmanned aerial vehicle[J]. Johns Hopkins Apl Technical Digest, 1998, 19: 501-512.
[7] 丛敏. 鸬鹚潜射多用途无人机完成溅落与回收试验[J]. 飞航导弹, 2007: 25-26.
[8] WEISSHAAR T A. Morphing aircraft systems: Historical perspectives and future challenges [J]. Journal of Aircraft, 2013, 50: 337-353.
[9] JANES I. Us forces eye switchblade lethal aerial ammunition[J]. Jane’s International Defence Review, 2011(7): 16.
[10] GAO A, TECHET A H. Design considerations for a robotic flying fish[J]. OCEANS’11 MTS/IEEE KONA, 2011: 1-8.
[11] SIDDALL R, KOVAČ M. Launching the aquamav: bioinspired design for aerial–aquatic robotic platforms[J]. Bioinspiration & biomimetics, 2014, 9(3): 031001.
[12] SIDDALL R, KOVAČ M. A water jet thruster for an aquatic micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 3979-3985.
[13] SIDDALL R, ORTEGA ANCEL A, KOVAČ M. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface focus, 2017, 7(1): 20160085.
[14] STEWART W J, WEISLER W, MACLEOD M, et al. Design and demonstration of a seabirdinspired fixed-wing hybrid uav-uuv system.[J]. Bioinspiration & biomimetics, 2018, 13 5: 056013.
[15] WEISLER W, STEWART W J, ANDERSON M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments [J]. IEEE Journal of Oceanic Engineering, 2018, 43: 969-982.
[16] GUO D, BACCIAGLIA A, SIMPSON M, et al. Design and development a bimodal unmanned system[C]//AIAA Scitech 2019 Forum. 2019: 2096.
[17] ROCKENBAUER F M, JEGER S L, BELTRAN L, et al. Dipper: A dynamically transitioning aerial–aquatic unmanned vehicle[J]. Robotics Science and Systems (RRS), 2021.
[18] 刘伟. 潜水飞机总体设计与气动外形结构设计分析[D]. 南昌: 南昌航空大学, 2012.
[19] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(01):102-114.
[20] 鲍杨春. 跨介质航行器流体动力外形组合仿生设计与气动特性分析[D]. 长春: 吉林大学,2019.
[21] LOCK R J, VAIDYANATHAN R, BURGESS S C. Impact of marine locomotion constraints on a bio-inspired aerial-aquatic wing: experimental performance verification[J]. Journal of Mechanisms and Robotics, 2014, 6(1): 011001.
[22] IZRAELEVITZ J S, TRIANTAFYLLOU M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5830-5837.
[23] CHEN Y, HELBLING E F, GRAVISH N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 331-338.
[24] CHEN Y, WANG H, HELBLING E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science robotics, 2017, 2(11): eaao5619.
[25] PORNSIN-SIRIRAK T N, TAI Y C, HO C M, et al. Microbat: A palm-sized electrically powered ornithopter[C]//Proceedings of NASA/JPL workshop on biomorphic robotics: volume 14. Citeseer, 2001: 17.
[26] SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C]//Proceeding of 28th Congress of the International Council of the Aeronautical Sciences. Brisbane, Australia, 2012.
[27] INC F. Bionicflyingfox ultra-light flying object with intelligent kinematics[EB/OL]. 2018
[2022-04-09]. https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlights-2018/bionicflyingfox-id_32755/.
[28] DE CROON G, DE CLERCQ K, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the delfly[J]. International Journal of Micro Air Vehicles, 2009, 1(2): 71-97.
[29] GILLEBAART T, VAN ZUIJLEN A, BIJL H. Aerodynamic analysis of the wing flexibility and the clap-and-peel motion of the hovering delfly ii[C]//International Micro Air Vehicle conference and competitions 2011 (IMAV 2011),’t Harde, The Netherlands, September 12-15, 2011. Delft University of Technology, 2011.
[30] TIJMONS S, DE WAGTER C, REMES B, et al. Autonomous door and corridor traversal with a 20-gram flapping wing mav by onboard stereo vision[J]. Aerospace, 2018, 5(3): 69.
[31] KARÁSEK M, MUIJRES F T, WAGTER C D, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361: 1089 - 1094.
[32] 昂海松. 仿生扑翼推进飞行器的发展和前景[C]//中国力学大会-2017 暨庆祝中国力学学会成立60 周年大会论文集(B). 2017.
[33] 李京虎. 两段式仿生扑翼飞行器的结构设计与仿真分析[D]. 北京: 北京交通大学, 2020.
[34] 徐艺星. 仿蝙蝠微型扑翼飞行器气动理论研究及结构优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[35] INC F. Aqua_ray inspired by the manta ray[EB/OL]. 2010
[2022-04-09]. https://www.festo.com/hk/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2006-to-2009/aqua-ray-id_33860/?siteUid=fox_hk&siteName=Festo+HK.
[36] INC F. Aquapenguins navigate independently in all directions[EB/OL]. 2009
[2022-04-09]. https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2006-to-2009/aquapenguins-id_33831/.
[37] 蔡月日, 毕树生. 胸鳍摆动推进模式仿生鱼研究进展[J]. 机械工程学报, 2011, 47(19): 8.
[38] 王扬威, 王振龙, 李健, 等. 形状记忆合金驱动仿生蝠鲼机器鱼的设计[J]. 机器人, 2010, 32(2): 6.
[39] 赵珍, 郭友军, 司哲. 西工大研制的仿蝠鲼滑扑一体柔体潜航器试航成功[EB/OL]. 2019
[2022-04-09]. https://www.nwpu.edu.cn/info/1038/7139.htm.
[40] MIAO J M, HO M H. Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil[J]. Journal of Fluids and Structures, 2006, 22(3): 401-419.
[41] LIU G, REN Y, ZHU J, et al. Thrust producing mechanisms in ray-inspired underwater vehicle propulsion[J]. Theoretical and Applied mechanics letters, 2015, 5(1): 54-57.
[42] FISH F E, SCHREIBER C M, MOORED K W, et al. Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta[J]. Aerospace, 2016, 3(3): 20.
[43] CAI W H, ZHAN J M, LUO Y Y. A study on the hydrodynamic performance of manta ray biomimetic glider under unconstrained six-dof motion[J]. Plos one, 2020, 15(11): e0241677.
[44] ZHENG H, XIE F, JI T, et al. Multifidelity kinematic parameter optimization of a flapping airfoil[J]. Physical Review E, 2020, 101(1): 013107.
[45] SHI G, XIAO Q. Numerical investigation of a bio-inspired underwater robot with skeletonreinforced undulating fins[J]. European Journal of Mechanics-B/Fluids, 2021, 87: 75-91.
[46] 刘富娟. 仿生水翼推进的数值模拟和实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[47] 白亚强, 张军, 丁恩宝, 等. 静水中长鳍扭波推进的水动力数值研究[J]. 水动力学研究与进展:A 辑, 2016(4): 7.
[48] ANDERSON J M, STREITLIEN K, BARRETT D, et al. Oscillating foils of high propulsive efficiency[J]. Journal of Fluid mechanics, 1998, 360: 41-72.
[49] READ D A, HOVER F, TRIANTAFYLLOU M. Forces on oscillating foils for propulsion and maneuvering[J]. Journal of Fluids and Structures, 2003, 17(1): 163-183.
[50] CURET O M, PATANKAR N A, LAUDER G V, et al. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor[J]. Bioinspiration & biomimetics, 2011, 6(2):026004.
[51] IZRAELEVITZ J S, TRIANTAFYLLOU M S. Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils[J]. Journal of Fluid Mechanics,2014, 742: 5-34.
[52] 段文博, 昂海松, 肖天航. 可差动扭转扑翼飞行器的设计和风洞试验研究[J]. 实验流体力学, 2013, 27(3): 6.
[53] LIU H, TAYLOR B, CURET O M. Fin ray stiffness and fin morphology control ribbon-fin-based propulsion[J]. Soft robotics, 2017, 4(2): 103-116.
[54] 张亚锋, 李郁, 田卫军. 扑动幅值角对仿生扑翼气动力特性的影响[J]. 机械工程与自动化,2019(1): 3.
[55] IZRAELEVITZ J J S. Flapping wings for dual aerial and aquatic propulsion[D]. Massachusetts Institute of Technology, 2017
修改评论