中文版 | English
题名

水空两栖扑翼无人飞行器设计与动力学特性研究

其他题名
RESEARCH ON AIRCRAFT DESIGN ANDDYNAMICS CHARACTERISTICS OF WATER-AIRAMPHIBIOUS FLAPPING WING UNMANNEDAERIAL VEHICLES
姓名
姓名拼音
LI Shisheng
学号
12032546
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王凭慧
导师单位
创新创业学院
论文答辩日期
2022-05-13
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       水空两栖无人飞行器既可以在空中飞行,又可以在水下潜航,在军事侦察、水质监测等领域都有广阔的应用前景。但是,现有的水空两栖无人飞行器的结构与动力系统都存在一定的水空兼容性问题。自然界中的部分鸟类和蝠鲼科生物可以在水和空气中通过翅膀或胸鳍进行扑翼运动,这为水空两栖无人飞行器的研制提供了新的思路。基于上述背景,本文开展新型水空两栖无人飞行器布局形式设计,同时开展二维扑翼仿真,探究不同的运动轨迹和运动参数对水动力和气动力特性的影响规律,最后开展拖曳水池实验,探究扑翼不同运动轨迹和运动参数对水动力特性的影响规律。本文的主要内容如下:
       针对水空两栖无人飞行器推进系统兼容性和跨介质转换问题,提出了一种兼
具固定翼模式和扑翼模式的水空两栖无人飞行器布局形式,飞行器分为内翼和外
翼,内翼段为固定翼,外翼段为扑翼。当外翼段不动,飞行器可视为固定翼飞行器,通过平尾进行俯仰控制,通过方向舵进行偏航和滚转控制。外翼段采用鳍条机构,可以实现上下扑动和扭转变形。通过改变扑翼运动参数可以使扑翼产生在水下推进所需的推力和空中飞行所需的升力,实现了推进系统的水空兼容性。内外翼之间通过盘状轴承进行连接,实现前后划动。飞行器内翼段安装一对旋向相反的螺旋桨,以提供出水复位所需的拉力,同时两个螺旋桨旋转方向相反可以抵消反扭力矩,提高出水复飞的稳定性。开展了飞行器气动计算,并通过迭代优化对飞行器进行了纵向和横侧向气动布局优化,最终飞行器最大升力系数提升了10.55%,横滚静稳定性导数由0.0003 减小至-0.0016。
       开展了扑翼二维流体仿真,探究了不同弯度幅值、不同攻角幅值、不同扑动频率等参数下扑翼的动力学特性。对于本文开展的仿真,二自由度水下最大推进效率为56.34%,三自由度水下为42.03%。
        设计并制作了扑翼实验样机,对样机进行了物理可实现性验证,根据物理可实现性验证结果制定了实验方案,探究了三维扑翼在不同扑动轨迹下,不同的运动参数对水动力性能的影响,实验所取得的二自由度对称扑动下最高效率为40.16%,在物理可实现性条件下三自由度对角扑动实验取得的最高效率为22.05%。为水空两栖扑翼无人飞行器设计与控制提供理论基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] YANG X, WANG T, LIANG J, et al. Survey on the novel hybrid aquatic–aerial amphi-bious aircraft: Aquatic unmanned aerial vehicle (aquauav)[J]. Progress in Aerospace Sciences, 2015, 74: 131-151.
[2] 云忠, 温猛, 罗自荣, 等. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54: 407-415.
[3] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016,9: 152-157.
[4] 刘龙. 变体全柔性翼扑动推进水下航行器设计与研究[D]. 南京: 南京航空航天大学, 2017.
[5] WHALEY, P E, STEWART, et al. Path from urgent operational need to program of record[J]. Defense AR journal, 2014, 21: 526.
[6] VIGLIOTTI V. Demonstration of submarine control of an unmanned aerial vehicle[J]. Johns Hopkins Apl Technical Digest, 1998, 19: 501-512.
[7] 丛敏. 鸬鹚潜射多用途无人机完成溅落与回收试验[J]. 飞航导弹, 2007: 25-26.
[8] WEISSHAAR T A. Morphing aircraft systems: Historical perspectives and future challenges [J]. Journal of Aircraft, 2013, 50: 337-353.
[9] JANES I. Us forces eye switchblade lethal aerial ammunition[J]. Jane’s International Defence Review, 2011(7): 16.
[10] GAO A, TECHET A H. Design considerations for a robotic flying fish[J]. OCEANS’11 MTS/IEEE KONA, 2011: 1-8.
[11] SIDDALL R, KOVAČ M. Launching the aquamav: bioinspired design for aerial–aquatic robotic platforms[J]. Bioinspiration & biomimetics, 2014, 9(3): 031001.
[12] SIDDALL R, KOVAČ M. A water jet thruster for an aquatic micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 3979-3985.
[13] SIDDALL R, ORTEGA ANCEL A, KOVAČ M. Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface focus, 2017, 7(1): 20160085.
[14] STEWART W J, WEISLER W, MACLEOD M, et al. Design and demonstration of a seabirdinspired fixed-wing hybrid uav-uuv system.[J]. Bioinspiration & biomimetics, 2018, 13 5: 056013.
[15] WEISLER W, STEWART W J, ANDERSON M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments [J]. IEEE Journal of Oceanic Engineering, 2018, 43: 969-982.
[16] GUO D, BACCIAGLIA A, SIMPSON M, et al. Design and development a bimodal unmanned system[C]//AIAA Scitech 2019 Forum. 2019: 2096.
[17] ROCKENBAUER F M, JEGER S L, BELTRAN L, et al. Dipper: A dynamically transitioning aerial–aquatic unmanned vehicle[J]. Robotics Science and Systems (RRS), 2021.
[18] 刘伟. 潜水飞机总体设计与气动外形结构设计分析[D]. 南昌: 南昌航空大学, 2012.
[19] 杨兴帮, 梁建宏, 文力, 等. 水空两栖跨介质无人飞行器研究现状[J]. 机器人, 2018, 40(01):102-114.
[20] 鲍杨春. 跨介质航行器流体动力外形组合仿生设计与气动特性分析[D]. 长春: 吉林大学,2019.
[21] LOCK R J, VAIDYANATHAN R, BURGESS S C. Impact of marine locomotion constraints on a bio-inspired aerial-aquatic wing: experimental performance verification[J]. Journal of Mechanisms and Robotics, 2014, 6(1): 011001.
[22] IZRAELEVITZ J S, TRIANTAFYLLOU M S. A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 5830-5837.
[23] CHEN Y, HELBLING E F, GRAVISH N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 331-338.
[24] CHEN Y, WANG H, HELBLING E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science robotics, 2017, 2(11): eaao5619.
[25] PORNSIN-SIRIRAK T N, TAI Y C, HO C M, et al. Microbat: A palm-sized electrically powered ornithopter[C]//Proceedings of NASA/JPL workshop on biomorphic robotics: volume 14. Citeseer, 2001: 17.
[26] SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C]//Proceeding of 28th Congress of the International Council of the Aeronautical Sciences. Brisbane, Australia, 2012.
[27] INC F. Bionicflyingfox ultra-light flying object with intelligent kinematics[EB/OL]. 2018
[2022-04-09]. https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlights-2018/bionicflyingfox-id_32755/.
[28] DE CROON G, DE CLERCQ K, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the delfly[J]. International Journal of Micro Air Vehicles, 2009, 1(2): 71-97.
[29] GILLEBAART T, VAN ZUIJLEN A, BIJL H. Aerodynamic analysis of the wing flexibility and the clap-and-peel motion of the hovering delfly ii[C]//International Micro Air Vehicle conference and competitions 2011 (IMAV 2011),’t Harde, The Netherlands, September 12-15, 2011. Delft University of Technology, 2011.
[30] TIJMONS S, DE WAGTER C, REMES B, et al. Autonomous door and corridor traversal with a 20-gram flapping wing mav by onboard stereo vision[J]. Aerospace, 2018, 5(3): 69.
[31] KARÁSEK M, MUIJRES F T, WAGTER C D, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361: 1089 - 1094.
[32] 昂海松. 仿生扑翼推进飞行器的发展和前景[C]//中国力学大会-2017 暨庆祝中国力学学会成立60 周年大会论文集(B). 2017.
[33] 李京虎. 两段式仿生扑翼飞行器的结构设计与仿真分析[D]. 北京: 北京交通大学, 2020.
[34] 徐艺星. 仿蝙蝠微型扑翼飞行器气动理论研究及结构优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[35] INC F. Aqua_ray inspired by the manta ray[EB/OL]. 2010
[2022-04-09]. https://www.festo.com/hk/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2006-to-2009/aqua-ray-id_33860/?siteUid=fox_hk&siteName=Festo+HK.
[36] INC F. Aquapenguins navigate independently in all directions[EB/OL]. 2009
[2022-04-09]. https://www.festo.com/us/en/e/about-festo/research-and-development/bionic-learning-network/highlights-from-2006-to-2009/aquapenguins-id_33831/.
[37] 蔡月日, 毕树生. 胸鳍摆动推进模式仿生鱼研究进展[J]. 机械工程学报, 2011, 47(19): 8.
[38] 王扬威, 王振龙, 李健, 等. 形状记忆合金驱动仿生蝠鲼机器鱼的设计[J]. 机器人, 2010, 32(2): 6.
[39] 赵珍, 郭友军, 司哲. 西工大研制的仿蝠鲼滑扑一体柔体潜航器试航成功[EB/OL]. 2019
[2022-04-09]. https://www.nwpu.edu.cn/info/1038/7139.htm.
[40] MIAO J M, HO M H. Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil[J]. Journal of Fluids and Structures, 2006, 22(3): 401-419.
[41] LIU G, REN Y, ZHU J, et al. Thrust producing mechanisms in ray-inspired underwater vehicle propulsion[J]. Theoretical and Applied mechanics letters, 2015, 5(1): 54-57.
[42] FISH F E, SCHREIBER C M, MOORED K W, et al. Hydrodynamic performance of aquatic flapping: efficiency of underwater flight in the manta[J]. Aerospace, 2016, 3(3): 20.
[43] CAI W H, ZHAN J M, LUO Y Y. A study on the hydrodynamic performance of manta ray biomimetic glider under unconstrained six-dof motion[J]. Plos one, 2020, 15(11): e0241677.
[44] ZHENG H, XIE F, JI T, et al. Multifidelity kinematic parameter optimization of a flapping airfoil[J]. Physical Review E, 2020, 101(1): 013107.
[45] SHI G, XIAO Q. Numerical investigation of a bio-inspired underwater robot with skeletonreinforced undulating fins[J]. European Journal of Mechanics-B/Fluids, 2021, 87: 75-91.
[46] 刘富娟. 仿生水翼推进的数值模拟和实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[47] 白亚强, 张军, 丁恩宝, 等. 静水中长鳍扭波推进的水动力数值研究[J]. 水动力学研究与进展:A 辑, 2016(4): 7.
[48] ANDERSON J M, STREITLIEN K, BARRETT D, et al. Oscillating foils of high propulsive efficiency[J]. Journal of Fluid mechanics, 1998, 360: 41-72.
[49] READ D A, HOVER F, TRIANTAFYLLOU M. Forces on oscillating foils for propulsion and maneuvering[J]. Journal of Fluids and Structures, 2003, 17(1): 163-183.
[50] CURET O M, PATANKAR N A, LAUDER G V, et al. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor[J]. Bioinspiration & biomimetics, 2011, 6(2):026004.
[51] IZRAELEVITZ J S, TRIANTAFYLLOU M S. Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils[J]. Journal of Fluid Mechanics,2014, 742: 5-34.
[52] 段文博, 昂海松, 肖天航. 可差动扭转扑翼飞行器的设计和风洞试验研究[J]. 实验流体力学, 2013, 27(3): 6.
[53] LIU H, TAYLOR B, CURET O M. Fin ray stiffness and fin morphology control ribbon-fin-based propulsion[J]. Soft robotics, 2017, 4(2): 103-116.
[54] 张亚锋, 李郁, 田卫军. 扑动幅值角对仿生扑翼气动力特性的影响[J]. 机械工程与自动化,2019(1): 3.
[55] IZRAELEVITZ J J S. Flapping wings for dual aerial and aquatic propulsion[D]. Massachusetts Institute of Technology, 2017

所在学位评定分委会
创新创业学院
国内图书分类号
V276
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342756
专题创新创业学院
推荐引用方式
GB/T 7714
黎石胜. 水空两栖扑翼无人飞行器设计与动力学特性研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032546-黎石胜-创新创业学院.(9763KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黎石胜]的文章
百度学术
百度学术中相似的文章
[黎石胜]的文章
必应学术
必应学术中相似的文章
[黎石胜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。