[1] PAUL, BENIOFF. The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines[J]. Journal of Statistical Physics, 1980.
[2] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21.
[3] SHOR P. Algorithms for quantum computation: discrete logarithms and factoring[J]. In Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1994: 124-134.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[J]. Phys. Rev. Lett, 1997, 79.
[5] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[6] HAN-SEN Z, HUI W, YU-HAO D, et al. Quantum computational advantage using photons[J]. Science (New York, N.Y.), 2021, 2020 年 370 卷 6523 期: 1460-1463 页.
[7] 张江. 和乐量子计算[D]. 山东大学, 2015.
[8] PANCHARATNAM S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417.
[9] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, 1984.
[10] SIMON, BARRY. Holonomy, the quantum adiabatic theorem, and berrys̈ phase[J]. Physical Review Letters, 1983, 51(24): 2167-2170.
[11] WILCZEK F, ZEE A. Appearance of gauge structure in simple dynamical systems[J]. Physical Review Letters, 1984.
[12] AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum evolution[J]. Physical Review Letters, 1987, 58(16): 1593.
[13] SAMUEL J, BHANDARI R. General setting for berry’s phase[J]. Physical Review Letters, 1988, 60(23): 2339.
[14] ANANDAN J. Non-adiabatic non-abelian geometric phase[J]. Physics Letters A, 1988, 133 (4-5): 171-175.
[15] ZANARDI P, RASETTI M. Holonomic quantum computation[J]. Physics Letters A, 1999, 264 (2–3): 94-99.
[16] DUAN, L.-M., CIRAC, et al. Geometric manipulation of trapped ions for quantum computation. [J]. Science, 2001.
[17] SJöQVIST E, TONG D M, HESSMO B, et al. Non-adiabatic holonomic quantum computation [J]. New Journal of Physics, 2011, 14(17): 170501.
[18] JR A, FINK J M, JULIUSSON K, et al. Experimental realization of non-abelian non-adiabatic geometric gates[J]. Nature, 2013, 496(7446): 482-485.
[19] FENG G, XU G, LONG G. Experimental realization of nonadiabatic holonomic quantum computation[J]. Physical Review Letters, 2013, 110(19): 190501.
[20] XU G F, LIU C L, ZHAO P Z, et al. Nonadiabatic holonomic gates realized by a single-shot implementation[J]. Physical Review A, 2015, 92(5): 052302.
[21] HERTERICH E, SJöQVIST E. Single-loop multiple-pulse nonadiabatic holonomic quantum gates[J]. Physical Review A, 2016.
[22] ZHAO P Z, WU X, XING T H, et al. Nonadiabatic holonomic quantum computation with rydberg superatoms[J]. Physical Review A, 2018, 98(3): 032313.
[23] XU G F, TONG D M, SJöQVIST E. Path-shortening realizations of nonadiabatic holonomic gates[J]. Phys. Rev. A, 2018, 98: 052315.
[24] LIU B J, SONG X K, XUE Z Y, et al. Plug-and-play approach to nonadiabatic geometric quantum gates[J]. Phys. Rev. Lett., 2019, 123: 100501.
[25] ZHAO P Z, LI K Z, XU G F, et al. General approach for constructing hamiltonians for nonadiabatic holonomic quantum computation[J]. Phys. Rev. A, 2020, 101: 062306.
[26] LIANG Y, SHEN P, CHEN T, et al. Composite short-path nonadiabatic holonomic quantum gates[J]. arXiv preprint arXiv:2111.06217, 2021.
[27] JONES J A, V V, A E. Geometric quantum computation using nuclear magnetic resonance[J]. Nature, 2000, 403(6772): 869-871.
[28] XIANG-BIN W, KEIJI M. Nonadiabatic conditional geometric phase shift with nmr[J]. Physical Review Letters, 2001, 87(9): 097901.
[29] ZHU S L, WANG Z D. Geometric phase shift in quantum computation using superconducting nanocircuits: nonadiabatic effects[J]. Physical Review A, 2002, 66(4): 423221-423224.
[30] LI X Q, CEN L X, HUANG G, et al. Nonadiabatic geometric quantum computation with trapped ions[J]. Physical Review A, 2003, 66(4).
[31] CHEN T, XUE Z Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling[J]. Physical Review Applied, 2018, 10(5).
[32] SOLINAS P, ZANARDI P, ZANGHì N, et al. Nonadiabatic geometrical quantum gates in semiconductor quantum dots[J]. Physical Review A, 2003, 67(5): 52309-52309.
[33] CHENGXIAN Z, CHEN T, LI S, et al. High-fidelity geometric gate for silicon-based spin qubits [J/OL]. Physical Review A, 2020, 101: 052302. DOI: 10.1103/PhysRevA.101.052302.
[34] ZHU S L, WANG Z D. Unconventional geometric quantum computation[J]. Phys.rev.lett, 2003, 91(18): 187902.
[35] DU J, ZOU P, WANG Z D. Experimental implementation of high-fidelity unconventional geometric quantum gates using nmr interferometer[J]. Physical Review A, 2005, 74(2):343346.
[36] ZHAO P Z, CUI X D, XU G F, et al. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation[J]. Phys. Rev. A, 2017, 96: 052316.
[37] LI K Z, ZHAO P Z, TONG D M. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths[J]. Physical Review Research, 2020, 2(2).
[38] LI S, XUE J, CHEN T, et al. High-fidelity geometric quantum gates with short paths on superconducting circuits[J]. Advanced Quantum Technologies, 2021.
[39] ZHOU J, LI S, PAN G Z, et al. Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts[J]. Physical Review A, 2021, 103(3): 032609.
[40] DING C Y, JI L N, CHEN T, et al. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits[J]. Quantum Science and Technology, 2022, 7(1).
[41] DING C Y, LIANG Y, YU K Z, et al. Nonadiabatic geometric quantum computation with shortened path on superconducting circuits[J]. arXiv preprint arXiv:2111.01410, 2021.
[42] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik, 2000.
[43] MUHONEN, T. J, DEHOLLAIN, et al. Storing quantum information for 30 seconds in a nano-electronic device[J]. Nature Nanotechnology, 2014, 9: 986-991.
[44] HE Y, GORMAN S K, KEITH D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571: 371-375.
[45] PETIT L, EENINK H, RUSS M, et al. Universal quantum logic in hot silicon qubits[J]. Nature, 2020, 580: 355–359.
[46] YANG C H, LEON R, HWANG J, et al. Operation of a silicon quantum processor unit cell above one kelvin[J]. Nature, 2020, 580(7803): 350-354.
[47] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Physical Review A, 1997, 57(1): 120-126.
[48] KANE B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[49] KOPPENS F, BUIZERT C, TIELROOIJ K, et al. Driven coherent oscillations of a single electron spin in a quantum dot[J]. Nature, 2006, 442(7104): p. 766-771.
[50] RASHBA E I, EFROS A L. Orbital mechanisms of electron-spin manipulation by an electric field[J]. Physical Review Letters, 2003.
[51] TOKURA Y, WIEL W G V D, OBATA T, et al. Coherent single electron spin control in a slanting zeeman field[J]. Physical Review Letters, 2006, 96(4): 047202.
[52] LAIRD E, BARTHEL C, RASHBA E, et al. Hyperfine-mediated gate-driven electron spin resonance[C]//Aps March Meeting. 2008.
[53] SHAFIEI M, NOWACK K C, REICHL C, et al. Resolving spin-orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot[J]. Physical Review Letters, 2013, 110(10): 107601.
[54] VELDHORST M, HWANG J C C, YANG C H. An addressable quantum dot qubit with fault tolerant control-fidelity[J]. Nature Nanotechnology, 2014, 9: 981–985.
[55] MUHONEN J T, LAUCHT A, SIMMONS S, et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking[J]. Journal of Physics Condensed Matter An Institute of Physics Journal and De Hollain, 2014, 27(15): 154205.
[56] KAWAKAMI E, SCARLINO P, WARD D R, et al. Electrical control of a long-lived spin qubit in a si/sige quantum dot[J]. APS Meeting Abstracts.
[57] TAKEDA K, KAMIOKA J, OTSUKA T, et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot[J]. Science Advances, 2016, 2(8): e1600694-e1600694.
[58] NICHOL J M, ORONA L A, HARVEY S P, et al. High-fidelity entangling gate for double quantum-dot spin qubits[J]. npj Quantum Information, 2017.
[59] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven cnot gate for electron spins [J]. Science, 2018, 359(6374): 439-442.
[60] YONEDA J, TAKEDA K, OTSUKA T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%[J]. Nature Nanotechnology, 2018, 13(2): 102.
[61] YANG C H, CHAN K W, ZAJAC D M. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering[J]. Nature Electronics, 2019, 2: 151–158.
[62] HUANG W, YANG C H, CHAN K W, et al. Fidelity benchmarks for two-qubit gates in silicon [J]. Nature, 2019, 569(7757): 532-536.
[63] XUE X, RUSS M, SAMKHARADZE N, et al. Computing with spin qubits at the surface code error threshold[J]. Nature, 2022, 601: 343-347.
[64] XUE X, PATRA B, VAN DIJK J. Cmos-based cryogenic control of silicon quantum circuits[J]. Nature, 2021, 593: 205-210.
[65] NOIRI A, TAKEDA K, NAKAJIMA T. Fast universal quantum gate above the fault-tolerance threshold in silicon[J]. Nature, 2022, 601: 338–342.
[66] MDZIK M T, ASAAD S, YOUSSRY A, et al. Precision tomography of a three-qubit electron- nuclear quantum processor in silicon[J]. Nature, 2022, 601: 348–353.
[67] GOLOVACH V N, BORHANI M, LOSS D. Holonomic quantum computation with electron spins in quantum dots[J]. Phys. Rev. A, 2010, 81: 022315.
[68] CHEN M Y, ZHANG C, XUE Z Y. Fast high-fidelity geometric gates for singlet-triplet qubits [J]. arXiv preprint arXiv:2111.07705, 2021.
[69] GRIFFITHS D J. Introduction to quantum mechanics[J]. American Journal of Physics, 2005, 63(8): 323.
[70] PLA J J, TAN K Y, DEHOLLAIN J P, et al. A single-atom electron spin qubit in silicon[J]. Nature, 2012, 489(7417): p.541-545,A3.
[71] LEVY J. Universal quantum computation with spin-1/2 pairs and heisenberg exchange[J]. Phys. Rev. Lett., 2002, 89: 147902.
[72] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(5744): 2180-2184.
[73] REED M D, MAUNE B M, ANDREWS R W, et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation[J]. Phys. Rev. Lett., 2016, 116: 110402.
[74] HUANG P. Dephasing of exchange-coupled spins in quantum dots for quantum computing[J]. Advanced Quantum Technologies, 2021.
[75] 赵培茈, 许国富, 仝殿民. 非绝热和乐量子计算研究进展[J]. 科学通报, 2021, 66(16): 11.
修改评论