中文版 | English
题名

基于量子点自旋比特实现高保真几何量子门

其他题名
HIGH-FIDELITY GEOMETRIC QUANTUM GATE BASED ON SPIN QUBITS IN QUANTUM DOTS
姓名
姓名拼音
LIN Yuefeng
学号
12032704
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856材料与化工
导师
黄培豪
导师单位
量子科学与工程研究院
外机构导师
郑盛根
外机构导师单位
鹏城实验室
论文答辩日期
2022-05-17
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

     量子计算利用量子力学的基本原理,具备远超经典计算机的计算能力,可以解
决经典计算机难以解决的实际问题。量子计算机的实现需要可靠的物理体系。半
导体量子点量子比特具有相干时间长、可拓展、易于集成的优势,是最有希望实
现通用量子计算机的物理体系之一。然而,为了实现容错量子计算,基于半导体
量子点自旋比特制备量子门的保真度还需要进一步提升。本论文提出基于半导体
量子点自旋量子比特实现几何量子门的方案,可以有效的抵抗开放系统与环境相
互作用引起的退相干和操作误差。
    本论文致力于半导体量子点量子比特的高保真度几何量子逻辑门的理论研究,
主要工作有:
    一、提出基于半导体量子点电子自旋量子比特制备非绝热几何量子门的方案。
我们优化了单回路橘形演化路径的方案,设计一般的单回路橘形演化路径来实现
非绝热几何量子门。通过计算量子门的演化时间和鲁棒性分析,我们的方案具备
以下优势:一是降低量子门的演化时间,二是提高了量子门的保真度,三是可以在
对称的双量子点系统中,通过电偶极子自旋共振技术驱动量子比特,直接实现控
制非门。
    二、提出基于半导体量子点单-三态自旋量子比特制备非绝热和乐量子门的方
案。在该方案中,我们制备了𝑅𝑧(𝜋(1 + sin 𝛾)) 量子门和𝑅𝑥(𝜋(1 + sin 𝛾)) 量子门。
进一步,结合这两个量子门可以实现任意的非绝热单比特和乐量子门。

其他摘要

    Quantum computation has far more powerful computing capabilities than classical computation, and can solve practical problems that are difficult to be solved by classical computer, utilizing the basic principles of quantum mechanics. To realize quantum computer, it requires reliable physical systems. Semiconductor quantum dots with long coherence time and scalability, is one of the most promising physical systems to realize
universal quantum computer. However, to realize fault-tolerant quantum computation, the fidelity of quantum gates based on spin qubits in quantum dots needs to be further improved. In this thesis, we propose a scheme to realize high fidelity geometric quantum gates based on spin qubits in semiconductor quantum dots, which can effectively resist the
decoherence and operation error, that are caused by the interaction between open system and environment.
    This thesis is devoted to the theoretical research of high fidelity geometric quantum gates of spin qubits in semiconductor quantum dots. The main achievements are the following:
    1. A scheme for realizing non-adiabatic geometric quantum gates based on spin qubits in semiconductor quantum dots is proposed. We optimize the scheme of orangeslice-sharped-loops evolution path, and design a general-orange-slice-sharped-loop evolution path to achieve non-adiabatic geometric quantum gate. By calculating the evolution time and analyzing the robustness, the advantages of our scheme are the following: first, it reduces the evolution time of quantum gates; second, it improves the fidelity of quantum gates; third, it can drive qubits through electric dipole spin resonance technology in a symmetrical double quantum dot system to directly realize the CNOT gate.
    2. A scheme for realizing non-adiabatic geometric quantum gates based on singlettriplrt spin qubits in semiconductor quantum dots is proposed. In the scheme, we realize the 𝑅𝑧(𝜋(1 + sin 𝛾)) and 𝑅𝑥(𝜋(1 + sin 𝛾)) gates. Furthermore, arbitrary non-adiabatic holonomic single-qubit gates can be realized by combining 𝑅𝑧(𝜋(1+sin 𝛾)) and 𝑅𝑥(𝜋(1+sin 𝛾)) gates.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] PAUL, BENIOFF. The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines[J]. Journal of Statistical Physics, 1980.
[2] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21.
[3] SHOR P. Algorithms for quantum computation: discrete logarithms and factoring[J]. In Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1994: 124-134.
[4] GROVER L K. A fast quantum mechanical algorithm for database search[J]. Phys. Rev. Lett, 1997, 79.
[5] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
[6] HAN-SEN Z, HUI W, YU-HAO D, et al. Quantum computational advantage using photons[J]. Science (New York, N.Y.), 2021, 2020 年 370 卷 6523 期: 1460-1463 页.
[7] 张江. 和乐量子计算[D]. 山东大学, 2015.
[8] PANCHARATNAM S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417.
[9] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, 1984.
[10] SIMON, BARRY. Holonomy, the quantum adiabatic theorem, and berrys̈ phase[J]. Physical Review Letters, 1983, 51(24): 2167-2170.
[11] WILCZEK F, ZEE A. Appearance of gauge structure in simple dynamical systems[J]. Physical Review Letters, 1984.
[12] AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum evolution[J]. Physical Review Letters, 1987, 58(16): 1593.
[13] SAMUEL J, BHANDARI R. General setting for berry’s phase[J]. Physical Review Letters, 1988, 60(23): 2339.
[14] ANANDAN J. Non-adiabatic non-abelian geometric phase[J]. Physics Letters A, 1988, 133 (4-5): 171-175.
[15] ZANARDI P, RASETTI M. Holonomic quantum computation[J]. Physics Letters A, 1999, 264 (2–3): 94-99.
[16] DUAN, L.-M., CIRAC, et al. Geometric manipulation of trapped ions for quantum computation. [J]. Science, 2001.
[17] SJöQVIST E, TONG D M, HESSMO B, et al. Non-adiabatic holonomic quantum computation [J]. New Journal of Physics, 2011, 14(17): 170501.
[18] JR A, FINK J M, JULIUSSON K, et al. Experimental realization of non-abelian non-adiabatic geometric gates[J]. Nature, 2013, 496(7446): 482-485.
[19] FENG G, XU G, LONG G. Experimental realization of nonadiabatic holonomic quantum computation[J]. Physical Review Letters, 2013, 110(19): 190501.
[20] XU G F, LIU C L, ZHAO P Z, et al. Nonadiabatic holonomic gates realized by a single-shot implementation[J]. Physical Review A, 2015, 92(5): 052302.
[21] HERTERICH E, SJöQVIST E. Single-loop multiple-pulse nonadiabatic holonomic quantum gates[J]. Physical Review A, 2016.
[22] ZHAO P Z, WU X, XING T H, et al. Nonadiabatic holonomic quantum computation with rydberg superatoms[J]. Physical Review A, 2018, 98(3): 032313.
[23] XU G F, TONG D M, SJöQVIST E. Path-shortening realizations of nonadiabatic holonomic gates[J]. Phys. Rev. A, 2018, 98: 052315.
[24] LIU B J, SONG X K, XUE Z Y, et al. Plug-and-play approach to nonadiabatic geometric quantum gates[J]. Phys. Rev. Lett., 2019, 123: 100501.
[25] ZHAO P Z, LI K Z, XU G F, et al. General approach for constructing hamiltonians for nonadiabatic holonomic quantum computation[J]. Phys. Rev. A, 2020, 101: 062306.
[26] LIANG Y, SHEN P, CHEN T, et al. Composite short-path nonadiabatic holonomic quantum gates[J]. arXiv preprint arXiv:2111.06217, 2021.
[27] JONES J A, V V, A E. Geometric quantum computation using nuclear magnetic resonance[J]. Nature, 2000, 403(6772): 869-871.
[28] XIANG-BIN W, KEIJI M. Nonadiabatic conditional geometric phase shift with nmr[J]. Physical Review Letters, 2001, 87(9): 097901.
[29] ZHU S L, WANG Z D. Geometric phase shift in quantum computation using superconducting nanocircuits: nonadiabatic effects[J]. Physical Review A, 2002, 66(4): 423221-423224.
[30] LI X Q, CEN L X, HUANG G, et al. Nonadiabatic geometric quantum computation with trapped ions[J]. Physical Review A, 2003, 66(4).
[31] CHEN T, XUE Z Y. Nonadiabatic geometric quantum computation with parametrically tunable coupling[J]. Physical Review Applied, 2018, 10(5).
[32] SOLINAS P, ZANARDI P, ZANGHì N, et al. Nonadiabatic geometrical quantum gates in semiconductor quantum dots[J]. Physical Review A, 2003, 67(5): 52309-52309.
[33] CHENGXIAN Z, CHEN T, LI S, et al. High-fidelity geometric gate for silicon-based spin qubits [J/OL]. Physical Review A, 2020, 101: 052302. DOI: 10.1103/PhysRevA.101.052302.
[34] ZHU S L, WANG Z D. Unconventional geometric quantum computation[J]. Phys.rev.lett, 2003, 91(18): 187902.
[35] DU J, ZOU P, WANG Z D. Experimental implementation of high-fidelity unconventional geometric quantum gates using nmr interferometer[J]. Physical Review A, 2005, 74(2):343346.
[36] ZHAO P Z, CUI X D, XU G F, et al. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation[J]. Phys. Rev. A, 2017, 96: 052316.
[37] LI K Z, ZHAO P Z, TONG D M. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths[J]. Physical Review Research, 2020, 2(2).
[38] LI S, XUE J, CHEN T, et al. High-fidelity geometric quantum gates with short paths on superconducting circuits[J]. Advanced Quantum Technologies, 2021.
[39] ZHOU J, LI S, PAN G Z, et al. Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts[J]. Physical Review A, 2021, 103(3): 032609.
[40] DING C Y, JI L N, CHEN T, et al. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits[J]. Quantum Science and Technology, 2022, 7(1).
[41] DING C Y, LIANG Y, YU K Z, et al. Nonadiabatic geometric quantum computation with shortened path on superconducting circuits[J]. arXiv preprint arXiv:2111.01410, 2021.
[42] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik, 2000.
[43] MUHONEN, T. J, DEHOLLAIN, et al. Storing quantum information for 30 seconds in a nano-electronic device[J]. Nature Nanotechnology, 2014, 9: 986-991.
[44] HE Y, GORMAN S K, KEITH D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571: 371-375.
[45] PETIT L, EENINK H, RUSS M, et al. Universal quantum logic in hot silicon qubits[J]. Nature, 2020, 580: 355–359.
[46] YANG C H, LEON R, HWANG J, et al. Operation of a silicon quantum processor unit cell above one kelvin[J]. Nature, 2020, 580(7803): 350-354.
[47] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Physical Review A, 1997, 57(1): 120-126.
[48] KANE B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[49] KOPPENS F, BUIZERT C, TIELROOIJ K, et al. Driven coherent oscillations of a single electron spin in a quantum dot[J]. Nature, 2006, 442(7104): p. 766-771.
[50] RASHBA E I, EFROS A L. Orbital mechanisms of electron-spin manipulation by an electric field[J]. Physical Review Letters, 2003.
[51] TOKURA Y, WIEL W G V D, OBATA T, et al. Coherent single electron spin control in a slanting zeeman field[J]. Physical Review Letters, 2006, 96(4): 047202.
[52] LAIRD E, BARTHEL C, RASHBA E, et al. Hyperfine-mediated gate-driven electron spin resonance[C]//Aps March Meeting. 2008.
[53] SHAFIEI M, NOWACK K C, REICHL C, et al. Resolving spin-orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot[J]. Physical Review Letters, 2013, 110(10): 107601.
[54] VELDHORST M, HWANG J C C, YANG C H. An addressable quantum dot qubit with fault tolerant control-fidelity[J]. Nature Nanotechnology, 2014, 9: 981–985.
[55] MUHONEN J T, LAUCHT A, SIMMONS S, et al. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking[J]. Journal of Physics Condensed Matter An Institute of Physics Journal and De Hollain, 2014, 27(15): 154205.
[56] KAWAKAMI E, SCARLINO P, WARD D R, et al. Electrical control of a long-lived spin qubit in a si/sige quantum dot[J]. APS Meeting Abstracts.
[57] TAKEDA K, KAMIOKA J, OTSUKA T, et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot[J]. Science Advances, 2016, 2(8): e1600694-e1600694.
[58] NICHOL J M, ORONA L A, HARVEY S P, et al. High-fidelity entangling gate for double quantum-dot spin qubits[J]. npj Quantum Information, 2017.
[59] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven cnot gate for electron spins [J]. Science, 2018, 359(6374): 439-442.
[60] YONEDA J, TAKEDA K, OTSUKA T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%[J]. Nature Nanotechnology, 2018, 13(2): 102.
[61] YANG C H, CHAN K W, ZAJAC D M. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering[J]. Nature Electronics, 2019, 2: 151–158.
[62] HUANG W, YANG C H, CHAN K W, et al. Fidelity benchmarks for two-qubit gates in silicon [J]. Nature, 2019, 569(7757): 532-536.
[63] XUE X, RUSS M, SAMKHARADZE N, et al. Computing with spin qubits at the surface code error threshold[J]. Nature, 2022, 601: 343-347.
[64] XUE X, PATRA B, VAN DIJK J. Cmos-based cryogenic control of silicon quantum circuits[J]. Nature, 2021, 593: 205-210.
[65] NOIRI A, TAKEDA K, NAKAJIMA T. Fast universal quantum gate above the fault-tolerance threshold in silicon[J]. Nature, 2022, 601: 338–342.
[66] MDZIK M T, ASAAD S, YOUSSRY A, et al. Precision tomography of a three-qubit electron- nuclear quantum processor in silicon[J]. Nature, 2022, 601: 348–353.
[67] GOLOVACH V N, BORHANI M, LOSS D. Holonomic quantum computation with electron spins in quantum dots[J]. Phys. Rev. A, 2010, 81: 022315.
[68] CHEN M Y, ZHANG C, XUE Z Y. Fast high-fidelity geometric gates for singlet-triplet qubits [J]. arXiv preprint arXiv:2111.07705, 2021.
[69] GRIFFITHS D J. Introduction to quantum mechanics[J]. American Journal of Physics, 2005, 63(8): 323.
[70] PLA J J, TAN K Y, DEHOLLAIN J P, et al. A single-atom electron spin qubit in silicon[J]. Nature, 2012, 489(7417): p.541-545,A3.
[71] LEVY J. Universal quantum computation with spin-1/2 pairs and heisenberg exchange[J]. Phys. Rev. Lett., 2002, 89: 147902.
[72] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(5744): 2180-2184.
[73] REED M D, MAUNE B M, ANDREWS R W, et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation[J]. Phys. Rev. Lett., 2016, 116: 110402.
[74] HUANG P. Dephasing of exchange-coupled spins in quantum dots for quantum computing[J]. Advanced Quantum Technologies, 2021.
[75] 赵培茈, 许国富, 仝殿民. 非绝热和乐量子计算研究进展[J]. 科学通报, 2021, 66(16): 11.

所在学位评定分委会
量子科学与工程研究院
国内图书分类号
0413
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342757
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
林跃锋. 基于量子点自旋比特实现高保真几何量子门[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032704-林跃锋-量子科学与工程(2086KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林跃锋]的文章
百度学术
百度学术中相似的文章
[林跃锋]的文章
必应学术
必应学术中相似的文章
[林跃锋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。