中文版 | English
题名

金属酞菁/碳纳米管复合材料的制备及其在超级电容器中的应用

其他题名
FABRICATION AND SUPERCAPACITOR APPLICATION OF METAL PHTHALOCYANINE/CARBON NANOTUBE COMPOSITES
姓名
姓名拼音
WANG Yu
学号
12032116
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
许宗祥
导师单位
化学系
论文答辩日期
2022-05-10
论文提交日期
2022-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

超级电容器因其高功率密度、良好的循环稳定性等优点被人们视作是 很有前景的储能器件。电极材料在其构成中占据着至关重要的地位,引起 了许多学者的关注,但目前的的电极材料无法在保持高能量密度的同时兼 具良好的循环稳定性。本文以具有赝电容特征、结构稳定的金属酞菁为主 要研究对象,设计合成了一种外围八甲基取代镍酞菁/碳纳米管纳米复合材 料,并将其应用于全固态柔性超级电容器。 采用邻苯二腈法制备以 Ni、Co 为中心金属的无取代原酞菁(MPc)和 外围八甲基取代酞菁(MMe2Pc),并通过沉淀法制备相应的纳米结构。通 过分析可知,甲基的引入使得酞菁形成具有更小的尺寸和更强的 π-π 相互作 用的纳米结构,使其具有更高的电导率,有利于电化学性能的提升。在四 种金属酞菁纳米结构中,NiMe2Pc 纳米线具有 87.3 F g−1 的最大比电容 (0.25 A g−1)。 利用具有高氧化还原活性的 NiMe2Pc 纳米线与碳纳米管复合,形成了 一种具有树枝状结构的纳米复合材料,可以提供更多的电荷存储位点和快 速的离子传输通道,从而表现出优异的结构稳定性,能在具有高能量密度 的同时保持良好的器件循环稳定性。优化 NiMe2Pc/CNT-COOH 复合材料的 比例,当两者质量比为 6:10 时获得了 330.5 F g−1 的最高比电容。所构建的 基于 NiMe2Pc/CNT-COOH 复合材料的全固态对称超级电容器表现出优异的 性能,其最大能量密度为 22.8 Wh kg−1,并且在 35000 次循环后其电容保持 率为 111.6%,展现出优异的循环稳定性。此外,通过柔性碳布制备的全固 态柔性超级电容器具有 52.1 Wh kg−1 的能量密度,同样在经过 35000 次循环 后其电容保持率为 95.4%,展现了其良好的电化学性能。这些研究成果为 设计用于下一代柔性超级电容器的酞菁基电极材料提供了一种新策略,为 超级电容器在商业市场上的应用创造可行性。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] GAO Y, ZHAO L. Review on recent advances in nanostructured transition-metalsulfide-based electrode materials for cathode materials of asymmetric supercapacitors[J]. Chemical Engineering Journal, 2022, 430: 132745.
[2] CHAKRABORTY S, L M N. Review—An Overview on Supercapacitors and Its Applications[J]. Journal of The Electrochemical Society, 2022, 169(2): 020552.
[3] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energyfuture[J]. Nature, 2012, 488: 294-303.
[4] GORDUK O, GENCTEN M, GORDUK S, et al. Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials[J]. Journal of Energy Storage, 2021, 33: 102049.
[5] ZHANG L, HU X, WANG Z, et al. A review of supercapacitor modeling, estimation, and applications: A control/management perspective[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1868-1878.
[6] 张磊聪. 柔性超级电容器电极材料的设计、制备及性能研究[D].中国科学院大学(中国科学院深圳先进技术研究院), 2020.
[7] 李坤振. Cu,Ni 基一体化电极的制备及超级电容器性能研究[D].中国科学技术大学, 2021.
[8] CONWAY B E, BIRSS V, WOJTOWICZ J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. Journal of Powe r Sources, 1997, 66(1-2): 1-14.
[9] TRASATTI S, BUZZANCA G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1971, 29(2): A1-A5.
[10] YAN J, LI S, LAN B, et al. Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors[J]. Advanced Functional Materials, 2019: 1902564.
[11]ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[12] SPERANZA G. The Role of Functionalization in the Applications of Carbon Materials: An Overview[J]. Journal of Carbon Research, 2019, 5(4): 84.
[13] KOTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15-16): 2483-2498.
[14] STOLLER M D, MAGNUSON C W, ZHU Y, et al. Interfacial capacitance of single 参考文献65layer graphene[J]. Energy & Environmental Science, 2011, 4(11): 4685-4689.
[15] EL-KADY M F, STRONG V, DUBIN S, et al. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors[J]. Science, 2012, 335(6074): 1326-1330.
[16] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[17] AN C, ZHANG Y, GUO H, et al. Metal oxide-based supercapacitors: progress and prospectives[J]. Nanoscale Advances, 2019, 1(12): 4644-4658.
[18] PENG S, LI L, KONG YOONG LEE J, et al. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage[J]. Nano Energy, 2016, 22: 361-395.
[19] JUNG D, MUNI M, MARIN G, et al. Enhancing cycling stability of tungsten oxide supercapacitor electrodes via a boron cluster-based molecular cross-linking approach[J]. Journal of Materials Chemistry A, 2020, 8(35): 18015-18023.
[20] ARIAS A N, TESIO A Y, FLEXER V. Review—Non-Carbonaceous Materials as Cathodes for Lithium-Sulfur Batteries[J]. Journal of The Electrochemical Society, 2018, 165(1): A6119.
[21] WANG Q, ZHU Y, XUE J, et al. General Synthesis of Porous Mixed Metal Oxide Hollow Spheres with Enhanced Supercapacitive Properties[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17226-17232.
[22] BRYAN A M, SANTINO L M, LU Y, et al. Conducting Polymers for Pseudocapacitive Energy Storage[J]. Chemistry of Materials, 2016, 28(17): 5989-5998.
[23] CHENG T, ZHANG Y Z, WANG S, et al. Conductive Hydrogel-Based Electrodes and Electrolytes for Stretchable and Self-Healable Supercapacitors[J]. Advanced Functional Materials, 2021, 31(24): 2101303.
[24] ASEN P, SHAHROKHIAN S, IRAJIZAD A. Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application[J]. Journal of Electroanalytical Chemistry, 2018, 823: 505-516.
[25] DHIBAR S, DAS C K. Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes[J]. Journal of Alloys and Compounds, 2015, 653: 486-497.
[26] MA X, ZHOU W, MO D, et al. Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte[J]. Synthetic Metals, 2015, 203: 98-106.
[27] STOLLER M D, PARK S, ZHU Y, et al. Graphene-Based Ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
[28] SHIM H, BUDAK Ö, HAUG V, et al. Comparison of organic electrolytes at various temperatures for 2.8 V–Li-ion hybrid supercapacitors[J]. Electrochimica Acta, 2020, 参考文献66337: 135760.
[29] PENG H, GAO X, SUN K, et al. Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for widetemperature tolerant flexible supercapacitor[J]. Chemical Engineering Journal, 2021, 422: 130353.
[30] GAO X, HU Q, SUN K, et al. A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte[J]. Journal of Alloys and Compounds, 2021, 888: 161554.
[31] LEWANDOWSKI A, OLEJNICZAK A, GALINSKI M, et al. Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes[J]. Journal of Powder Sources, 2010, 195(17): 5814-5819.
[32] AZADIAN F, RASTOGI A C. Energy storage performance of thin film nanocrystalline vanadium oxide with fluorinated tin oxide current carrier electrode for soli d-state transparent supercapacitors based on ionic liquid gel electrolyte[J]. Electrochimica Acta, 2020, 330: 135339.
[33] MELVILLE O A, LESSARD B H, BENDER T P. Phthalocyanine-Based Organic ThinFilm Transistors: A Review of Recent Advances[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13105-13118.
[34] SOROKIN A, MEUNIER B, SÉRIS J L. Efficient Oxidative Dechlorination and Aromatic Ring Cleavage of Chlorinated Phenols Catalyzed by Iron Sulfophthalocyanine[J]. Science, 1995, 268(5214): 1163-1166.
[35] NISHIYAMA N, IRIYAMA A, JANG W D, et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer[J]. Nature Materials, 2005, 4(12): 934-941.
[36] KIMURA M, KURODA T, OHTA K, et al. Self-Organization of Hydrogen-Bonded Optically Active Phthalocyanine Dimers[J]. Langmuir, 2003, 19(11): 4825-4830.
[37] ZHANG M, SHAO C, GUO Z, et al. Highly Efficient Decomposition of Organic Dye by Aqueous-Solid Phase Transfer and In Situ Photocatalysis Using Hierarchical Copper Phthalocyanine Hollow Spheres[J]. ACS Applied Materials & Inte rfaces, 2011, 3(7): 2573-2578.
[38] CHEN* J, ZHU C, XU Y, et al. Advances in Phthalocyanine Compounds and their Photochemical and Electrochemical Properties[J]. Current Organic Chemistry, 2018, 22(5): 485-504.
[39] SAMANTA M, HOWLI P, GHORAI U K, et al. Solution processed Copper Phthalocyanine nanowires: A promising supercapacitor anode material[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 114: 113654.
[40] MU J, SHAO C, GUO Z, et al. Solvothermal synthesis and electrochemical properties of 3D flower-like iron phthalocyanine hierarchical nanostructure[J]. Nanoscale, 2011, 3(12): 5126.参考文献67
[41] MADHURI K P, JOHN N S. Supercapacitor application of nickel phthalocyanine nanofibres and its composite with reduced graphene oxide[J]. Applied Surface Science, 2018, 449: 528-536.
[42] RAMACHANDRAN R, HU Q, WANG F, et al. Synthesis of N-CuMe2Pc nanorods/graphene oxide nanocomposite for symmetric supercapacitor electrode withexcellent cyclic stability[J]. Electrochimica Acta, 2019, 298: 770-777.
[43] TAŞALTIN N, ZIREK Y, ŞAN M, et al. Flexible GO-CoPc and GO-NiPc nanocomposite electrodes for hybrid supercapacitors[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 116: 113766.
[44] AGBOOLA B O, OZOEMENA K I. Synergistic enhancement of supercapacitance upon integration of nickel (II) octa [(3,5-biscarboxylate)-phenoxy] phthalocyanine with SWCNT-phenylamine[J]. Journal of Power Sources, 2010, 195(12): 3841-3848.
[45] LUO Y, WU P, LI J, et al. Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine[J]. Chemical Engineering Journal, 2019: 123535.
[46] LEKITIMA J, OZOEMENA K I, KOBAYASHI N. Electrochemical Capacitors Based on Nitrogen-Enriched Cobalt (II) Phthalocyanine/Multi-walled Carbon Nanotube Nanocomposites[J]. ECS Transactions, 2013, 50(43): 125-132.
[47] LEKITIMA J N, OZOEMENA K I, JAFTA C J, et al. High-performance aqueous asymmetric electrochemical capacitors based on graphene oxide/cobalt(ii)-tetrapyrazinoporphyrazine hybrids[J]. Journal of Materials Chemistry A, 2013, 1(8): 2821.
[48] WU T, MA Z, HE Y, et al. A Covalent Black Phosphorus/Metal–Organic Framework Hetero-nanostructure for High-Performance Flexible Supercapacitors[J]. Angewandte Chemie, 2021, 133(18): 10454-10462.
[49] PANG H, LI X, ZHAO Q, et al. One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric allsolid-state supercapacitors[J]. Nano Energy, 2017, 35: 138-145.
[50] CHEN M, FAN H, ZHANG Y, et al. Coupling PEDOT on Mesoporous Vanadium Nitride Arrays for Advanced Flexible All-Solid-State Supercapacitors[J]. Small, 2020, 16(37): 2003434.
[51] LIU S, KANG L, HU J, et al. Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defect-Induced Manipulation toward Flexible SolidState Supercapacitors[J]. Small, 2022, 18: 2104507.
[52] YANG X, YAO Y, WANG Q, et al. 3D Macroporous Oxidation-Resistant Ti3C2TxMXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life[J]. Advanced Functional Materials, 2021, 32: 2109479.
[53] CHEN Z, JIANG S, KANG G, et al. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip -Enhanced 参考文献68Raman Spectroscopy[J]. Journal of the American Chemical Society, 2019, 141(39): 15684-15692.
[54] PHAM N N T, KANG S G, SON Y A, et al. Electrochemical Oxygen-Reduction Activity and Carbon Monoxide Tolerance of Iron Phthalocyanine Functionalized with Graphene Quantum Dots: A Density Functional Theory Approach[J]. The Journal of Physical Chemistry C, 2019, 123(45): 27483-27491.
[55] LAI Q, QUADIR M Z, AGUEY-ZINSOU K F. LiBH4 Electronic Destabilization with Nickel(II) Phthalocyanine—Leading to a Reversible Hydrogen Storage System[J]. ACS Applied Energy Materials, 2018, 1(12): 6824-6832.
[56] LI M, RAMACHANDRAN R, WANG Y, et al. Boosting the Capacitive Performance of Cobalt(II) Phthalocyanine by Non-peripheral Octamethyl Substitution for Supercapacitors†[J]. Chinese Journal of Chemistry, 2021, 39(5): 1265-1272.
[57] ZHAI Y, DOU Y, ZHAO D, et al. Carbon Materials for Chemical Capacitive Energy Storage[J]. Advanced Materials, 2011, 23: 4828-4850.
[58]WANG Q, GAO H, ZHAO C, et al. π-π stacked iron (II) phthalocyanine/graphene oxide composites: rational fabrication and excellent supercapacitor properties with superior rate performance[J]. Journal of Solid State Electrochemistry, 2021, 25(2): 659-670.
[59] ZHAI YP, DOU YQ, ZHAO DY, et al. Carbon Materials for Chemical Capacitive Energy Storage[J]. Advanced Materials, 2011, 23: 4828-4850.
[60] DASGUPTA N, SUN JW, LIU C, et al. 25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications[J]. Advanced Materials, 2014, 26: 2137-2184.
[61] GNANA SUNDARA RAJ B, KO T H, ACHARYA J, et al. A novel Fe2O3-decorated Ndoped CNT porous composites derived from tubular polypyrrole with excellent rate capability and cycle stability as advanced supercapacitor anode materials[J]. Electrochimica Acta, 2020, 334: 135627.
[62] AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522.
[63] AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high -rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614.
[64] WIN P E P, WANG J, JIA X, et al. Synergistic effects of polyoxometalate with MoS2sheets on multi-walled carbon nanotubes backbone for high-performance supercapacitor[J]. Journal of Alloys and Compounds, 2020, 844: 156194.
[65] RANJITHKUMAR R, ARASI S E, DEVENDRAN P, et al. Investigations and fabrication of Ni(OH)2 encapsulated carbon nanotubes nanocomposites based asymmetrical hybrid electrochemical supercapacitor[J]. Journal of Energy Storage, 2020, 32: 101934.参考文献69
[66] LOKHANDE A C, TEOTIA S, SHELKE A R, et al. Chalcopyrite based carbon composite electrodes for high performance symmetric supercapacitor[J]. Chemical Engineering Journal, 2020, 399: 125711.
[67] MOFOKENG T P, TETANA Z N, OZOEMENA K I. Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics[J]. Carbon, 2020, 169: 312-326.
[68] ZHENG Y, TIAN Y, SARWAR S, et al. Carbon nanotubes decorated NiSe 2 nanosheets for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 452: 227793.
[69] FANG Z, CAO L, LAI F, et al. Carbon nano bowl array derived from a corncob sponge/carbon nanotubes/polymer composite and its electrochemical properties[J]. Composites Science and Technology, 2019, 183: 107792.
[70] NIU H, ZHANG Y, LIU Y, et al. NiCo-layered double-hydroxide and carbon nanosheets microarray derived from MOFs for high performance hybrid supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 539: 545-552.
[71] WANG Y, ZHANG D, LU Y, et al. Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for highperformance supercapacitors[J]. Carbon, 2019, 143: 335-342.
[72] CHEN W, LUO M, YANG K, et al. MXene loaded onto clean wiper by a dot-matrix drop-casting method as a free-standing electrode for stretchable and flexible supercapacitors[J]. Chemical Engineering Journal, 2021, 423: 130242.
[73] MOOPRI SINGER PANDIYARAJAN S, VEERASUBRAMANI G K, BHATTARAI R M, et al. Designing an Interlayer-Widened MoS2-Packed Nitrogen-Rich Carbon Nanotube Core–Shell Structure for Redox-Mediated Quasi-Solid-State Supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(3): 2218-2230.
[74] WANG Q, MA Y, LIANG X, et al. Flexible supercapacitors based on carbon nanotubeMnO2 nanocomposite film electrode[J]. Chemical Engineering Journal, 2019, 371: 145-153.
[75] WU S, LIU C, DINH D A, et al. Three-Dimensional Self-Standing and Conductive MnCO3@Graphene/CNT Networks for Flexible Asymmetric Supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9763-9770.
[76] XIE S, DONG F, LI J. Flexible Solid-State Supercapacitor Based on Carbon Nanotube/Fe3O4/Reduced Graphene Oxide Binary Films[J]. ChemistrySelect, 2019, 4(1): 437-440.
[77] LI Z, LIU X, WANG L, et al. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors[J]. Small, 2018, 14(39): 1801498.
[78] SHI X, SUN L, LI X, et al. High-performance flexible supercapacitor enabled by Polypyrrole-coated NiCoP@CNT electrode for wearable devices[J]. Journal of Colloid 参考文献70and Interface Science, 2022, 606: 135-147.
[79] LU P, JIANG X, GUO W, et al. A Ni–Co sulfide nanosheet/carbon nanotube hybrid film for high-energy and high-power flexible supercapacitors[J]. Carbon, 2021, 178: 355-362.
[80] LIU Y, MIAO X, ZHANG X, et al. High performance flexible quasi-solid-state zincion hybrid supercapacitors enable by electrode potential adjustment[J]. Journal of Power Sources, 2021, 495: 229789.
[81] JIAN X, LI H, LI H, et al. Flexible and freestanding MoS2/rGO/CNT hybrid fibers for high-capacity all-solid supercapacitors[J]. Carbon, 2021, 172: 132-137.
[82] WU K, YE Z, DING Y, et al. Facile co-deposition of the carbon nanotube@MnO2heterostructure for high-performance flexible supercapacitors[J]. Journal of Power Sources, 2020, 477: 229031.
[83] FANG D, ZHOU J, SHENG L, et al. Juglone bonded carbon nanotubes interweaving cellulose nanofibers as self-standing membrane electrodes for flexible high energy supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125325.
[84] YU X, ZHANG W, LIU L, et al. High Magnetic Field-Engineered Bunched Zn–Co–S Yolk–Shell Balls Intercalated within S, N Codoped CNT/Graphene Films for FreeStanding Supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33690-33701.
[85] LIU N, PAN Z, DING X, et al. In-situ growth of vertically aligned nickel cobalt sulfide nanowires on carbon nanotube fibers for high capacitance all-solid-state asymmetric fiber-supercapacitors[J]. Journal of Energy Chemistry, 2020, 41: 209-215

所在学位评定分委会
化学系
国内图书分类号
O646.54
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342759
专题理学院_化学系
推荐引用方式
GB/T 7714
王禹. 金属酞菁/碳纳米管复合材料的制备及其在超级电容器中的应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032116-王禹-化学系.pdf(8701KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王禹]的文章
百度学术
百度学术中相似的文章
[王禹]的文章
必应学术
必应学术中相似的文章
[王禹]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。