[1] BERRY M V. Quantal phase factors accompanying adiabatic changes[J/OL]. Proceedings ofthe Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57.https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023.
[2] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J/OL]. Reviews ofModern Physics, 2010, 82: 1959-2007. https://link.aps.org/doi/10.1103/RevModPhys.82.1959.
[3] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of thefine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6): 494.
[4] LAUGHLIN R B. Quantized Hall conductivity in two dimensions[J]. Physical Review B, 1981,23(10): 5632.
[5] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall conductance ina two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405.
[6] HALDANE F D M. Model for a quantum Hall effect without Landau levels: Condensed-matterrealization of the” parity anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015.
[7] HASAN M Z, KANE C L. Colloquium: Topological insulators[J/OL]. Reviews of ModernPhysics, 2010, 82: 3045-3067. https://link.aps.org/doi/10.1103/RevModPhys.82.3045.
[8] QI X L, ZHANG S C. Topological insulators and superconductors[J/OL]. Reviews of ModernPhysics, 2011, 83: 1057-1110. https://link.aps.org/doi/10.1103/RevModPhys.83.1057.
[9] ARMITAGE N, MELE E, VISHWANATH A. Weyl and Dirac semimetals in three-dimensionalsolids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.
[10] NIELSEN H B, NINOMIYA M. Absence of neutrinos on a lattice:(I). Proof by homotopy theory[J]. Nuclear Physics B, 1981, 185(1): 20-40.
[11] NIELSEN H B, NINOMIYA M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[J]. Physics Letters B, 1983, 130(6): 389-396.
[12] SON D T, SPIVAK B Z. Chiral anomaly and classical negative magnetoresistance of Weylmetals[J/OL]. Physical Review B, 2013, 88: 104412. https://link.aps.org/doi/10.1103/PhysRevB.88.104412.
[13] BURKOV A A. Chiral Anomaly and Diffusive Magnetotransport in Weyl Metals[J/OL]. Phys ical Review Letters, 2014, 113: 247203. https://link.aps.org/doi/10.1103/PhysRevLett.113.247203.
[14] KHARZEEV D E, YEE H U. Anomaly induced chiral magnetic current in a Weyl semimetal:Chiral electronics[J]. Physical Review B, 2013, 88(11): 115119.
[15] PARAMESWARAN S, GROVER T, ABANIN D, et al. Probing the chiral anomaly with non local transport in three-dimensional topological semimetals[J]. Physical Review X, 2014, 4(3):031035
[16] ZHOU J, CHANG H R, XIAO D. Plasmon mode as a detection of the chiral anomaly in Weylsemimetals[J]. Physical Review B, 2015, 91(3): 035114.
[17] SON D T, YAMAMOTO N. Berry curvature, triangle anomalies, and the chiral magnetic effectin Fermi liquids[J]. Physical Review Letters, 2012, 109(18): 181602.
[18] STEPHANOV M, YIN Y. Chiral kinetic theory[J]. Physical Review Letters, 2012, 109(16):162001.
[19] LANDSTEINER K, MEGIAS E, PENA-BENITEZ F. Gravitational anomaly and transportphenomena[J]. Physical Review Letters, 2011, 107(2): 021601.
[20] CHANG M C, YANG M F. Chiral magnetic effect in a two-band lattice model of Weyl semimetal[J]. Physical Review B, 2015, 91(11): 115203.
[21] JIANG Q D, JIANG H, LIU H, et al. Topological imbert-fedorov shift in weyl semimetals[J].Physical Review Letters, 2015, 115(15): 156602.
[22] JIANG Q D, JIANG H, LIU H, et al. Chiral wave-packet scattering in Weyl semimetals[J].Physical Review B, 2016, 93(19): 195165.
[23] CHEN C Z, SONG J, JIANG H, et al. Disorder and metal-insulator transitions in Weyl semimet als[J]. Physical Review Letters, 2015, 115(24): 246603.
[24] CHEN C Z, LIU H, JIANG H, et al. Positive magnetoconductivity of Weyl semimetals in theultraquantum limit[J]. Physical Review B, 2016, 93(16): 165420.
[25] KIM H J, KIM K S, WANG J F, et al. Dirac versus Weyl fermions in topological insulators:Adler-Bell-Jackiw anomaly in transport phenomena[J]. Physical Review Letters, 2013, 111(24):246603.
[26] KIM K S. Role of axion electrodynamics in a Weyl metal: Violation of Wiedemann-Franz law[J/OL]. Physical Review B, 2014, 90: 121108. https://link.aps.org/doi/10.1103/PhysRevB.90.121108.
[27] XIONG J, KUSHWAHA S K, LIANG T, et al. Evidence for the chiral anomaly in the Diracsemimetal Na3Bi[J]. Science, 2015, 350(6259): 413-416.
[28] JEON S, ZHOU B B, GYENIS A, et al. Landau quantization and quasiparticle interference inthe three-dimensional Dirac semimetal Cd 3 As 2[J]. Nature Materials, 2014, 13(9): 851-856.
[29] LIANG T, GIBSON Q, ALI M N, et al. Ultrahigh mobility and giant magnetoresistance in theDirac semimetal Cd 3 As 2[J]. Nature Materials, 2015, 14(3): 280-284.
[30] FENG J, PANG Y, WU D, et al. Large linear magnetoresistance in Dirac semimetal Cd 3 As 2with Fermi surfaces close to the Dirac points[J]. Physical Review B, 2015, 92(8): 081306.
[31] HE L, HONG X, DONG J, et al. Quantum transport evidence for the three-dimensional Diracsemimetal phase in Cd 3 As 2[J]. Physical Review Letters, 2014, 113(24): 246402.
[32] ZHAO Y, LIU H, ZHANG C, et al. Anisotropic Fermi surface and quantum limit transport inhigh mobility three-dimensional Dirac semimetal Cd 3 As 2[J]. Physical Review X, 2015, 5(3):031037.
[33] CAO J, LIANG S, ZHANG C, et al. Landau level splitting in Cd 3 As 2 under high magneticfields[J]. Nature Communications, 2015, 6(1): 1-6.
[34] SHEKHAR C, NAYAK A K, SUN Y, et al. Extremely large magnetoresistance and ultrahighmobility in the topological Weyl semimetal candidate NbP[J]. Nature Physics, 2015, 11(8):645-649.
[35] NARAYANAN A, WATSON M D, BLAKE S F, et al. Linear Magnetoresistance Caused byMobility Fluctuations in 𝑛-Doped Cd3As2[J/OL]. Physical Review Letters, 2015, 114: 117201.https://link.aps.org/doi/10.1103/PhysRevLett.114.117201.
[36] LI C Z, WANG L X, LIU H, et al. Giant negative magnetoresistance induced by the chiralanomaly in individual Cd 3 As 2 nanowires[J]. Nature Communications, 2015, 6(1): 1-7.
[37] LI H, HE H, LU H Z, et al. Negative magnetoresistance in dirac semimetal Cd 3 As 2[J]. NatureCommunications, 2016, 7(1): 1-7.
[38] ZHANG C, ZHANG E, LIU Y, et al. Detection of chiral anomaly and valley transport in Diracsemimetals[J]. arXiv preprint arXiv:1504.07698, 2015.
[39] WANG H, WANG H, LIU H, et al. Observation of superconductivity induced by a point contacton 3D Dirac semimetal Cd 3 As 2 crystals[J]. Nature Materials, 2016, 15(1): 38-42.
[40] AGGARWAL L, GAURAV A, THAKUR G S, et al. Unconventional superconductivity at meso scopic point contacts on the 3D Dirac semimetal Cd 3 As 2[J]. Nature Materials, 2016, 15(1):32-37.
[41] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-induced negativemagnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031023.
[42] ZHANG C L, XU S Y, BELOPOLSKI I, et al. SigNatures of the Adler–Bell–Jackiw chiralanomaly in a Weyl fermion semimetal[J]. Nature Communications, 2016, 7(1): 1-9.
[43] LI Q, KHARZEEV D E, ZHANG C, et al. Chiral magnetic effect in ZrTe 5[J]. Nature Physics,2016, 12(6): 550-554.
[44] CHEN R, CHEN Z, SONG X Y, et al. Magnetoinfrared spectroscopy of Landau levels andZeeman splitting of three-dimensional massless Dirac fermions in ZrTe 5[J]. Physical ReviewLetters, 2015, 115(17): 176404.
[45] ZHENG G, LU J, ZHU X, et al. Transport evidence for the three-dimensional Dirac semimetalphase in ZrT e 5[J]. Physical Review B, 2016, 93(11): 115414.
[46] ZHANG C, GUO C, LU H, et al. Large magnetoresistance over an extended temperature regimein monophosphides of tantalum and niobium[J]. Physical Review B, 2015, 92(4): 041203.
[47] ARNOLD F, SHEKHAR C, WU S C, et al. Negative magnetoresistance without well-definedchirality in the Weyl semimetal TaP[J]. Nature Communications, 2016, 7(1): 1-7.
[48] ZHANG C L, XU S Y, WANG C, et al. Magnetic-tunnelling-induced Weyl node annihilationin TaP[J]. Nature Physics, 2017, 13(10): 979-986.
[49] YANG X, LIU Y, WANG Z, et al. Chiral anomaly induced negative magnetoresistance in topo logical Weyl semimetal NbAs[J]. arXiv preprint arXiv:1506.03190, 2015.
[50] LI Y, WANG Z, LI P, et al. Negative magnetoresistance in Weyl semimetals NbAs and NbP:Intrinsic chiral anomaly and extrinsic effects[J]. Frontiers of Physics, 2017, 12(3): 127205.
[51] WANG Z, ZHENG Y, SHEN Z, et al. Helicity-protected ultrahigh mobility Weyl fermions inNbP[J]. Physical Review B, 2016, 93(12): 121112.
[52] WANG H, LI C K, LIU H, et al. Chiral anomaly and ultrahigh mobility in crystalline HfTe5[J/OL]. Physical Review B, 2016, 93: 165127. https://link.aps.org/doi/10.1103/PhysRevB.93.165127.
[53] LU H Z, SHI J, SHEN S Q. Competition between weak localization and antilocalization intopological surface states[J/OL]. Physical Review Letters, 2011, 107(7): 076801. https://link.aps.org/doi/10.1103/PhysRevLett.107.076801.
[54] LU H Z, SHEN S Q. Finite-temperature conductivity and magnetoconductivity of topologicalinsulators[J/OL]. Physical Review Letters, 2014, 112(14): 146601. https://link.aps.org/doi/10.1103/PhysRevLett.112.146601.
[55] LU H Z, SHEN S Q. Weak antilocalization and localization in disordered and interacting Weylsemimetals[J]. Physical Review B, 2015, 92: 035203.
[56] LU H Z, ZHANG S B, SHEN S Q. High-field magnetoconductivity of topological semimetalswith short-range potential[J]. Physical Review B, 2015, 92(4): 045203.
[57] DAI X, LU H Z, SHEN S Q, et al. Detecting monopole charge in Weyl semimetals via quantuminterference transport[J]. Physical Review B, 2016, 93(16): 161110.
[58] ZHANG S B, LU H Z, SHEN S Q. Linear magnetoconductivity in an intrinsic topological Weylsemimetal[J]. New Journal of Physics, 2016, 18(5): 053039.
[59] WANG C, LU H Z, SHEN S Q. Anomalous phase shift of quantum oscillations in 3D topologicalsemimetals[J]. Physical Review Letters, 2016, 117(7): 077201.
[60] WANG C M, SUN H P, LU H Z, et al. 3D Quantum Hall Effect of Fermi Arcs in TopologicalSemimetals[J/OL]. Physical Review Letters, 2017, 119: 136806. https://link.aps.org/doi/10.1103/PhysRevLett.119.136806.
[61] LI C, WANG C, WAN B, et al. Rules for phase shifts of quantum oscillations in topologicalnodal-line semimetals[J]. Physical Review Letters, 2018, 120(14): 146602.
[62] DAI X, DU Z Z, LU H Z. Negative Magnetoresistance without Chiral Anomaly in TopologicalInsulators[J/OL]. Physical Review Letters, 2017, 119: 166601. https://link.aps.org/doi/10.1103/PhysRevLett.119.166601.
[63] CHEN Y, LU H Z, XIE X. Forbidden backscattering and resistance dip in the quantum limit asa sigNature for topological insulators[J]. Physical Review Letters, 2018, 121(3): 036602.
[64] DU Z Z, WANG C M, LU H Z, et al. Band SigNatures for Strong Nonlinear Hall Effect inBilayer WTe2[J/OL]. Physical Review Letters, 2018, 121: 266601. https://link.aps.org/doi/10.1103/PhysRevLett.121.266601.
[65] DU Z, WANG C, LI S, et al. Disorder-induced nonlinear Hall effect with time-reversal symmetry[J]. Nature Communications, 2019, 10(1): 1-6.
[66] CAO Z, ZHANG H, LÜ H F, et al. Decays of Majorana or Andreev oscillations induced bysteplike spin-orbit coupling[J]. Physical Review Letters, 2019, 122(14): 147701.
[67] ZHANG C L, WANG C, YUAN Z, et al. Non-saturating quantum magnetization in Weylsemimetal TaAs[J]. Nature Communications, 2019, 10(1): 1-7.
[68] ZHANG J, WANG C, GUO C, et al. Anomalous Thermoelectric Effects of ZrTe 5 in and beyondthe Quantum Limit[J]. Physical Review Letters, 2019, 123(19): 196602.63
[69] QIN F, LI S, DU Z Z, et al. Theory for the Charge-Density-Wave Mechanism of 3D QuantumHall Effect[J/OL]. Physical Review Letters, 2020, 125: 206601. https://link.aps.org/doi/10.1103/PhysRevLett.125.206601.
[70] LU H Z, SHEN S Q. Quantum transport in topological semimetals under magnetic fields[J].Frontiers of Physics, 2017, 12(3): 127201.
[71] SUN H P, LU H Z. Quantum transport in topological semimetals under magnetic fields (II)[J].Frontiers of Physics, 2019, 14(3): 33405.
[72] ZHANG C, ZHANG E, WANG W, et al. Room-temperature chiral charge pumping in Diracsemimetals[J]. Nature Communications, 2017, 8(1): 1-9.
[73] ADLER S L. Axial-vector vertex in spinor electrodynamics[J]. Physical Review, 1969, 177(5):2426.
[74] BELL J S, JACKIW R. A PCAC puzzle: 𝜋 0→ 𝛾𝛾 in the 𝜎-model[J]. Il Nuovo Cimento A(1965-1970), 1969, 60(1): 47-61.
[75] WANG J, LI H, CHANG C, et al. Anomalous anisotropic magnetoresistance in topologicalinsulator films[J]. Nano Research, 2012, 5(10): 739-746.
[76] HE H T, LIU H C, LI B K, et al. Disorder-induced linear magnetoresistance in (221) topologicalinsulator Bi2Se3 films[J/OL]. Applied Physics Letters, 2013, 103(3): 031606. https://doi.org/10.1063/1.4816078.
[77] WIEDMANN S, JOST A, FAUQUÉ B, et al. Anisotropic and strong negative magnetoresistancein the three-dimensional topological insulator Bi 2 Se 3[J]. Physical Review B, 2016, 94(8):081302.
[78] WANG L X, YAN Y, ZHANG L, et al. Zeeman effect on surface electron transport in topologicalinsulator Bi 2 Se 3 nanoribbons[J]. Nanoscale, 2015, 7(40): 16687-16694.
[79] BREUNIG O, WANG Z, TASKIN A, et al. Gigantic negative magnetoresistance in the bulk ofa disordered topological insulator[J]. Nature Communications, 2017, 8(1): 1-7.
[80] ASSAF B, PHUPHACHONG T, KAMPERT E, et al. Negative longitudinal magnetoresistancefrom the anomalous N= 0 Landau level in topological materials[J]. Physical Review Letters,2017, 119(10): 106602.
[81] ZHANG M, WANG H, MU K, et al. Topological Phase Transition-Induced Triaxial VectorMagnetoresistance in (Bi1–x In x) 2Se3 Nanodevices[J]. ACS Nano, 2018, 12(2): 1537-1543.
[82] FLECKENSTEIN C, ZIANI N T, TRAUZETTEL B. Chiral anomaly in real space from stablefractional charges at the edge of a quantum spin Hall insulator[J]. Physical Review B, 2016, 94(24): 241406.
[83] ASHCROFT, MERMIN. Solid state physics[M]. Thomson Learning, 1976.
[84] WAN X, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surfacestates in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20):205101.
[85] YANG K Y, LU Y M, RAN Y. Quantum Hall effects in a Weyl semimetal: Possible applicationin pyrochlore iridates[J]. Physical Review B, 2011, 84(7): 075129.
[86] BURKOV A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J]. PhysicalReview Letters, 2011, 107(12): 127205.
[87] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous Hall effect inHgCr 2 Se 4[J]. Physical Review Letters, 2011, 107(18): 186806.
[88] JIANG J H. Tunable topological Weyl semimetal from simple-cubic lattices with staggeredfluxes[J]. Physical Review A, 2012, 85(3): 033640.
[89] YOUNG S M, ZAHEER S, TEO J C, et al. Dirac semimetal in three dimensions[J]. PhysicalReview Letters, 2012, 108(14): 140405.
[90] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitions in A 3Bi (A= Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.
[91] SINGH B, SHARMA A, LIN H, et al. Topological electronic structure and Weyl semimetal inthe TlBiSe 2 class of semiconductors[J]. Physical Review B, 2012, 86(11): 115208.
[92] WANG Z, WENG H, WU Q, et al. Three-dimensional Dirac semimetal and quantum transportin Cd 3 As 2[J]. Physical Review B, 2013, 88(12): 125427.
[93] LIU J, VANDERBILT D. Weyl semimetals from noncentrosymmetric topological insulators[J].Physical Review B, 2014, 90(15): 155316.
[94] BULMASH D, LIU C X, QI X L. Prediction of a Weyl semimetal in Hg 1- x- y Cd x Mn y Te[J]. Physical Review B, 2014, 89(8): 081106.
[95] BRAHLEK M, BANSAL N, KOIRALA N, et al. Topological-metal to band-insulator transitionin (Bi 1- x In x) 2 Se 3 thin films[J]. Physical Review Letters, 2012, 109(18): 186403.
[96] WU L, BRAHLEK M, AGUILAR R V, et al. A sudden collapse in the transport lifetime acrossthe topological phase transition in (Bi 1- x In x) 2 Se 3[J]. Nature Physics, 2013, 9(7): 410-414.
[97] LIU Z, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[98] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.
[99] LIU Z, JIANG J, ZHOU B, et al. A stable three-dimensional topological Dirac semimetal Cd 3As 2[J]. Nature Materials, 2014, 13(7): 677-681.
[100] NEUPANE M, XU S Y, SANKAR R, et al. Observation of a three-dimensional topologicalDirac semimetal phase in high-mobility Cd 3 As 2[J]. Nature Communications, 2014, 5(1):1-8.
[101] YI H, WANG Z, CHEN C, et al. Evidence of topological surface state in three-dimensionalDirac semimetal Cd 3 As 2[J]. Scientific Reports, 2014, 4: 6106.
[102] BORISENKO S, GIBSON Q, EVTUSHINSKY D, et al. Experimental realization of a three dimensional Dirac semimetal[J]. Physical Review Letters, 2014, 113(2): 027603.
[103] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.
[104] HUANG S M, XU S Y, BELOPOLSKI I, et al. A Weyl Fermion semimetal with surface Fermiarcs in the transition metal monopnictide TaAs class[J]. Nature Communications, 2015, 6(1):1-6.
[105] LV B, WENG H, FU B, et al. Experimental discovery of Weyl semimetal TaAs[J]. PhysicalReview X, 2015, 5(3): 031013.
[106] BORISENKO S, EVTUSHINSKY D, GIBSON Q, et al. Time-reversal symmetry breakingtype-II Weyl state in YbMnBi 2[J]. Nature Communications, 2019, 10(1): 1-10.
[107] BALENTS L. Weyl electrons kiss[J]. Physics, 2011, 4: 36.
[108] VOLOVIK G E. The universe in a helium droplet: volume 117[M]. Oxford University Press onDemand, 2003: 32-41.
[109] FU B, WANG H W, SHEN S Q. Quantum interference theory of magnetoresistance in Diracmaterials[J]. Physical Review Letters, 2019, 122(24): 246601.
[110] WANG H W, FU B, SHEN S Q. Anomalous Temperature Dependence of Quantum Correctionto the Conductivity of Magnetic Topological Insulators[J/OL]. Physical Review Letters, 2020,124: 206603. https://link.aps.org/doi/10.1103/PhysRevLett.124.206603.
[111] MCCANN E, KECHEDZHI K, FAL’KO V I, et al. Weak-localization magnetoresistance andvalley symmetry in graphene[J]. Physical Review Letters, 2006, 97(14): 146805.
[112] ALTSHULER B L, ARONOV A G, LEE P. Interaction effects in disordered Fermi systems intwo dimensions[J]. Physical Review Letters, 1980, 44(19): 1288.
[113] LEE P A, RAMAKRISHNAN T. Disordered electronic systems[J]. Reviews of Modern Physics,1985, 57(2): 287.
[114] FUKUYAMA H. Effects of interactions on non-metallic behaviors in two-dimensional disor dered systems[J]. Journal of the Physical Society of Japan, 1980, 48(6): 2169-2170.
[115] SHAN W Y, LU H Z, SHEN S Q. Spin-orbit scattering in quantum diffusion of massive Diracfermions[J]. Physical Review B, 2012, 86(12): 125303.
[116] MANZONI G, GRAGNANIELLO L, AUTÈS G, et al. Evidence for a strong topological insu lator phase in ZrTe 5[J]. Physical Review Letters, 2016, 117(23): 237601.
[117] ZHANG J, GUO C, ZHU X, et al. Disruption of the accidental Dirac semimetal state in ZrTe 5under hydrostatic pressure[J]. Physical Review Letters, 2017, 118(20): 206601.
[118] ANDREEV A, SPIVAK B. Longitudinal negative magnetoresistance and magnetotransportphenomena in conventional and topological conductors[J]. Physical Review Letters, 2018, 120(2): 026601.
[119] XIAO D, YAO Y, FANG Z, et al. Berry-Phase Effect in Anomalous Thermoelectric Transport[J/OL]. Physical Review Letters, 2006, 97: 026603. https://link.aps.org/doi/10.1103/PhysRevLett.97.026603.
[120] BERGMAN D L, OGANESYAN V. Theory of Dissipationless Nernst Effects[J/OL]. PhysicalReview Letters, 2010, 104: 066601. https://link.aps.org/doi/10.1103/PhysRevLett.104.066601.
[121] YOKOYAMA T, MURAKAMI S. Transverse magnetic heat transport on the surface of a topo logical insulator[J/OL]. Physical Review B, 2011, 83: 161407. https://link.aps.org/doi/10.1103/PhysRevB.83.161407.
[122] BUI C T, RIVADULLA F. Anomalous and planar Nernst effects in thin films of the half-metallicferromagnet La2/3Sr1/3MnO3[J/OL]. Physical Review B, 2014, 90: 100403. https://link.aps.org/doi/10.1103/PhysRevB.90.100403.66REFERENCES
[123] HIRSCHBERGER M, KUSHWAHA S, WANG Z, et al. The chiral anomaly and thermopowerof Weyl fermions in the half-Heusler GdPtBi[J/OL]. Nature Materials, 2016, 15(11): 1161-1165. https://wwwNature.53yu.com/articles/nmat4684.
[124] SHARMA G, GOSWAMI P, TEWARI S. Nernst and magnetothermal conductivity in a latticemodel of Weyl fermions[J/OL]. Physical Review B, 2016, 93: 035116. https://link.aps.org/doi/10.1103/PhysRevB.93.035116.
[125] NOKY J, GAYLES J, FELSER C, et al. Strong anomalous Nernst effect in collinear magneticWeyl semimetals without net magnetic moments[J/OL]. Physical Review B, 2018, 97: 220405.https://link.aps.org/doi/10.1103/PhysRevB.97.220405.
[126] NANDY S, TARAPHDER A, TEWARI S. Planar thermal Hall effect in Weyl semimetals[J/OL].Physical Review B, 2019, 100: 115139. https://link.aps.org/doi/10.1103/PhysRevB.100.115139.
[127] ZHANG J L, WANG C M, GUO C Y, et al. Anomalous Thermoelectric Effects of ZrTe5inand beyond the Quantum Limit[J/OL]. Physical Review Letters, 2019, 123: 196602. https://link.aps.org/doi/10.1103/PhysRevLett.123.196602.
[128] ZENG C, NANDY S, TEWARI S. Chiral anomaly induced nonlinear Nernst and thermal Halleffects in Weyl semimetals[J]. arXiv preprint arXiv:2012.11590, 2020.
[129] WANG P, CHO C W, TANG F, et al. Giant Nernst effect and field-enhanced transversal 𝑧𝑁T inZrTe5[J/OL]. Physical Review B, 2021, 103: 045203. https://link.aps.org/doi/10.1103/PhysRevB.103.045203.
[130] BEHNIA K, AUBIN H. Nernst effect in metals and superconductors: a review of concepts andexperiments[J]. Reports on Progress in Physics, 2016, 79(4): 046502.
[131] BEHNIA K, MÉASSON M A, KOPELEVICH Y. Oscillating Nernst-Ettingshausen effect inbismuth across the quantum limit[J]. Physical Review Letters, 2007, 98(16): 166602.
[132] FAUQUÉ B, ZHU Z, MURPHY T, et al. Nernst response of the Landau tubes in graphite acrossthe quantum limit[J]. Physical Review Letters, 2011, 106(24): 246405.
[133] FAUQUÉ B, BUTCH N P, SYERS P, et al. Magnetothermoelectric properties of bi 2 se 3[J].Physical Review B, 2013, 87(3): 035133.
[134] LIANG T, GIBSON Q, XIONG J, et al. Evidence for massive bulk Dirac fermions in Pb 1- x Snx Se from Nernst and thermopower experiments[J]. Nature Communications, 2013, 4(1): 1-9.
[135] ZHU Z, LIN X, LIU J, et al. Quantum oscillations, thermoelectric coefficients, and the fermisurface of semimetallic WTe 2[J]. Physical Review Letters, 2015, 114(17): 176601.
[136] SAKAI A, MIZUTA Y P, NUGROHO A A, et al. Giant anomalous Nernst effect and quantum critical scaling in a ferromagnetic semimetal[J]. Nature Physics, 2018, 14(11): 1119-1124.
[137] WAKEHAM N, BANGURA A F, XU X, et al. Gross violation of the Wiedemann–Franz lawin a quasi-one-dimensional conductor[J]. Nature Communications, 2011, 2(1): 1-6.
[138] XU L, LI X, LU X, et al. Finite-temperature violation of the anomalous transverse Wiedemann Franz law[J]. Science Advances, 2020, 6(17): eaaz3522.
[139] DING L, KOO J, XU L, et al. Intrinsic Anomalous Nernst Effect Amplified by Disorder in aHalf-Metallic Semimetal[J/OL]. Physics Review X, 2019, 9: 041061. https://link.aps.org/doi/10.1103/PhysRevX.9.041061.
[140] LI X, XU L, DING L, et al. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: BerryCurvature and Entropy Flow[J/OL]. Physical Review Letters, 2017, 119: 056601. https://link.aps.org/doi/10.1103/PhysRevLett.119.056601.
[141] ONOSE Y, SHIOMI Y, TOKURA Y. Lorenz Number Determination of the DissipationlessNature of the Anomalous Hall Effect in Itinerant Ferromagnets[J/OL]. Physical Review Letters,2008, 100: 016601. https://link.aps.org/doi/10.1103/PhysRevLett.100.016601.
[142] XU L, LI X, DING L, et al. Anomalous transverse response of Co2MnGa and universality ofthe room-temperature 𝛼𝐴𝑖𝑗/𝜎𝐴𝑖𝑗 ratio across topological magnets[J/OL]. Physical Review B, 2020,101: 180404. https://link.aps.org/doi/10.1103/PhysRevB.101.180404.
[143] CHO C W, WANG P, TANG F, et al. Thermal transport properties and some hydrodynamic-likebehavior in three-dimensional topological semimetal ZrTe5[J/OL]. Physical Review B, 2022,105: 085132. https://link.aps.org/doi/10.1103/PhysRevB.105.085132.
[144] FU C, SUN Y, FELSER C. Topological thermoelectrics[J/OL]. APL Materials, 2020, 8(4):040913. https://doi.org/10.1063/5.0005481.
[145] JONES T, FULLER W, WIETING T, et al. Thermoelectric power of HfTe5 and ZrTe5[J]. SolidState Communications, 1982, 42(11): 793-798.
[146] GOOTH J, NIEMANN A C, MENG T, et al. Experimental sigNatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP[J]. Nature, 2017, 547(7663): 324-327.
[147] JIA Z, LI C, LI X, et al. Thermoelectric sigNature of the chiral anomaly in Cd 3 As 2[J]. NatureCommunications, 2016, 7(1): 1-6.
[148] LIANG T, LIN J, GIBSON Q, et al. Anomalous Nernst effect in the dirac semimetal Cd 3 As 2[J]. Physical Review Letters, 2017, 118(13): 136601.
[149] MATUSIAK M, COOPER J, KACZOROWSKI D. Thermoelectric quantum oscillations inZrSiS[J]. Nature Communications, 2017, 8(1): 1-7.
[150] WATZMAN S J, MCCORMICK T M, SHEKHAR C, et al. Dirac dispersion generates unusuallylarge Nernst effect in Weyl semimetals[J]. Physical Review B, 2018, 97(16): 161404.
[151] HALL E H, et al. On a new action of the magnet on electric currents[J]. American Journal ofMathematics, 1879, 2(3): 287-292.
[152] KLITZING K, CHAKRABORTY T, KIM P, et al. 40 years of the quantum Hall effect[J]. NatureReviews Physics, 2020, 2(8): 397-401.
[153] HALL E H. XVIII. On the “Rotational Coefficient” in nickel and cobalt[J]. The London,Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 12(74): 157-172.
[154] KARPLUS R, LUTTINGER J. Hall effect in ferromagnetics[J]. Physical Review, 1954, 95(5):1154.
[155] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J/OL]. Reviews of ModernPhysics, 2010, 82: 1539-1592. https://link.aps.org/doi/10.1103/RevModPhys.82.1539.68
[156] BLUNDELL S J, BLUNDELL K M. Concepts in thermal physics[M]. Oxford University Presson Demand, 2010.
[157] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectricmaterials[J]. Angewandte Chemie International Edition, 2009, 48(46): 8616-8639.
[158] DIRAC P A M. The quantum theory of the electron[J]. Proceedings of the Royal Societyof London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, 117(778): 610-624.
[159] DIRAC P A M, et al. The principles of quantum mechanics: number 27[M]. Oxford universitypress, 1981.
[160] SHEN S Q. Topological Insulators: Dirac Equation in Condensed Matter[M]. Springer, 2017.
[161] SUNDARAM G, NIU Q. Wave-packet dynamics in slowly perturbed crystals: Gradient correc tions and Berry-phase effects[J]. Physical Review B, 1999, 59(23): 14915.
[162] CHANG M C, NIU Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassicaldynamics in magnetic Bloch bands[J/OL]. Physical Review B, 1996, 53: 7010-7023. https://link.aps.org/doi/10.1103/PhysRevB.53.7010.
[163] DATTA S. Electronic transport in mesoscopic systems[M]. Cambridge university press, 1997:23-24.
[164] HAUG H, JAUHO A P. Quantum kinetics in transport and optics of semiconductors: volume 2[M]. Springer, 2008.
[165] HURD. The Hall effect in metals and alloys[M]. Plenum Press, 1972.
[166] YIP S K. Kinetic equation and magneto-conductance for Weyl metal in the clean limit[J]. arXivpreprint arXiv:1508.01010, 2015.
[167] CULCER D, SINOVA J, SINITSYN N A, et al. Semiclassical Spin Transport in Spin-Orbit Coupled Bands[J]. Physical Review Letters, 2004, 93: 046602.
[168] COOPER N R, HALPERIN B I, RUZIN I M. Thermoelectric response of an interacting two dimensional electron gas in a quantizing magnetic field[J]. Physical Review B, 1997, 55: 2344-2359.
[169] XIAO D, SHI J, NIU Q. Berry Phase Correction to Electron Density of States in Solids[J].Physical Review Letters, 2005, 95: 137204.
[170] THONHAUSER T, CERESOLI D, VANDERBILT D, et al. Orbital Magnetization in PeriodicInsulators[J]. Physical Review Letters, 2005, 95: 137205.
[171] ARMITAGE N P, MELE E J, VISHWANATH A. Weyl and Dirac semimetals in three dimensional solids[J/OL]. Reviews of Modern Physics, 2018, 90: 015001. https://link.aps.org/doi/10.1103/RevModPhys.90.015001.
[172] LU H Z, SHEN S Q. Weak antilocalization and localization in disordered and interacting Weylsemimetals[J/OL]. Physical Review B, 2015, 92: 035203. https://link.aps.org/doi/10.1103/PhysRevB.92.035203.
[173] CHEN W, LU H Z, ZILBERBERG O. Weak Localization and Antilocalization in Nodal-LineSemimetals: Dimensionality and Topological Effects[J/OL]. Physical Review Letters, 2019,122: 196603. https://link.aps.org/doi/10.1103/PhysRevLett.122.196603.
[174] FU B, WANG H W, SHEN S Q. Quantum Interference Theory of Magnetoresistance in DiracMaterials[J/OL]. Physical Review Letters, 2019, 122: 246601. https://link.aps.org/doi/10.1103/PhysRevLett.122.246601.
[175] HE H, LI B, LIU H, et al. High-field linear magneto-resistance in topological insulator Bi2Se3thin films[J/OL]. Applied Physics Letters, 2012, 100(3): 032105. https://aip.scitation.org/doi/full/10.1063/1.3677669.
[176] PAN Y, WANG H, LU P, et al. The large unsaturated magnetoresistance of Weyl semimetals[J].arXiv preprint arXiv:1509.03975, 2015.
[177] ALEKSEEV P S, DMITRIEV A P, GORNYI I V, et al. Magnetoresistance in Two-ComponentSystems[J/OL]. Physical Review Letters, 2015, 114: 156601. https://link.aps.org/doi/10.1103/PhysRevLett.114.156601.
[178] SPIVAK B Z, ANDREEV A V. Magnetotransport phenomena related to the chiral anomaly inWeyl semimetals[J/OL]. Physical Review B, 2016, 93: 085107. https://link.aps.org/doi/10.1103/PhysRevB.93.085107.
[179] MA Q, XU S Y, SHEN H, et al. Observation of the nonlinear Hall effect under time-reversal symmetric conditions[J/OL]. Nature, 2019, 565(7739): 337-342. https://www.Nature.com/articles/s41586-018-0807-6.
[180] ZHANG C, ZHANG Y, YUAN X, et al. Quantum Hall effect based on Weyl orbits in Cd 3 As 2[J/OL]. Nature, 2019, 565(7739): 331-336. https://www.Nature.com/articles/s41586-018-0798-3#article-info.
[181] DU Z, WANG C, SUN H P, et al. Quantum theory of the nonlinear Hall effect[J]. NatureCommunications, 2021, 12(1): 1-7.
[182] DU Z, LU H Z, XIE X. Nonlinear Hall effects[J]. Nature Reviews Physics, 2021: 1-9.
[183] CHEN R, LIU T, WANG C M, et al. Field-Tunable One-Sided Higher-Order Topological HingeStates in Dirac Semimetals[J/OL]. Physical Review Letters, 2021, 127: 066801. https://link.aps.org/doi/10.1103/PhysRevLett.127.066801.
[184] CHEN R, WANG C M, LIU T, et al. Quantum Hall effect originated from helical edge states inCd3As2[J/OL]. Physics Review Research, 2021, 3: 033227. https://link.aps.org/doi/10.1103/PhysRevResearch.3.033227.
[185] ANDREEV A V, SPIVAK B Z. Longitudinal Negative Magnetoresistance and Magnetotrans port Phenomena in Conventional and Topological Conductors[J/OL]. Physical Review Letters,2018, 120: 026601. https://link.aps.org/doi/10.1103/PhysRevLett.120.026601.
[186] LANDSTEINER K, MEGÍAS E, PENA-BENITEZ F. Gravitational Anomaly and TransportPhenomena[J/OL]. Physical Review Letters, 2011, 107: 021601. https://link.aps.org/doi/10.1103/PhysRevLett.107.021601.
[187] LUCAS A, DAVISON R A, SACHDEV S. Hydrodynamic theory of thermoelectric transportand negative magnetoresistance in Weyl semimetals[J]. Proceedings of the National Academyof Sciences, 2016, 113(34): 9463-9468.
[188] GOOTH J, NIEMANN A C, MENG T, et al. Experimental sigNatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP[J]. Nature, 2017, 547(7663): 324-327.
[189] DAS K, AGARWAL A. Thermal and gravitational chiral anomaly induced magneto-transportin Weyl semimetals[J/OL]. Physics Review Research, 2020, 2: 013088. https://link.aps.org/doi/10.1103/PhysRevResearch.2.013088.
[190] GAO Y, YANG S A, NIU Q. Intrinsic relative magnetoconductivity of nonmagnetic metals[J/OL]. Physical Review B, 2017, 95: 165135. https://link.aps.org/doi/10.1103/PhysRevB.95.165135.
[191] DAS K, AGARWAL A. Intrinsic Hall conductivities induced by the orbital magnetic moment[J/OL]. Physical Review B, 2021, 103: 125432. https://link.aps.org/doi/10.1103/PhysRevB.103.125432.
[192] ZHANG W, WANG P, GU G, et al. Negative longitudinal magnetothermopower in the topo logical semimetal ZrTe5[J/OL]. Physical Review B, 2020, 102: 115147. https://link.aps.org/doi/10.1103/PhysRevB.102.115147.
[193] XIE Z, WEI X, QIANG X, et al. Crossover behavior in the magnetoresistance of thin flakes ofthe topological material ZrTe5[J/OL]. Physical Review B, 2021, 104: 125439. https://link.aps.org/doi/10.1103/PhysRevB.104.125439.
[194] LU H Z, ZHANG S B, SHEN S Q. High-field magnetoconductivity of topological semimetalswith short-range potential[J/OL]. Physical Review B, 2015, 92: 045203. https://link.aps.org/doi/10.1103/PhysRevB.92.045203.
[195] GAO Y B, HE B, PARKER D, et al. Experimental study of the valence band of Bi2Se3[J/OL].Physical Review B, 2014, 90: 125204. https://link.aps.org/doi/10.1103/PhysRevB.90.125204.
[196] MAHAN G D. Many-Particle physics[M]. Springer Science & Business Media, 2023.
[197] HUANG X, ZHAO L, LONG Y, et al. Observation of the Chiral-Anomaly-Induced NegativeMagnetoresistance in 3D Weyl Semimetal TaAs[J/OL]. Physics Review X, 2015, 5: 031023.https://link.aps.org/doi/10.1103/PhysRevX.5.031023.
[198] WIEDMANN S, JOST A, FAUQUÉ B, et al. Anisotropic and strong negative magnetoresistancein the three-dimensional topological insulator Bi2Se3[J/OL]. Physical Review B, 2016, 94:081302. https://link.aps.org/doi/10.1103/PhysRevB.94.081302.
[199] CHEN R Y, CHEN Z G, SONG X Y, et al. Magnetoinfrared Spectroscopy of Landau Levelsand Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe5[J/OL]. PhysicalReview Letters, 2015, 115: 176404. https://link.aps.org/doi/10.1103/PhysRevLett.115.176404.
[200] TANG F, REN Y, WANG P, et al. Three-dimensional quantum Hall effect and metal–insulatortransition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541.
[201] MAHAJAN R, BARKESHLI M, HARTNOLL S A. Non-Fermi liquids and the Wiedemann Franz law[J/OL]. Physical Review B, 2013, 88: 125107. https://link.aps.org/doi/10.1103/PhysRevB.88.125107.
[202] LAVASANI A, BULMASH D, DAS SARMA S. Wiedemann-Franz law and Fermi liquids[J/OL]. Physical Review B, 2019, 99: 085104. https://link.aps.org/doi/10.1103/PhysRevB.99.085104.
[203] KUBALA B, KÖNIG J, PEKOLA J. Violation of the Wiedemann-Franz Law in a Single Electron Transistor[J/OL]. Physical Review Letters, 2008, 100: 066801. https://link.aps.org/doi/10.1103/PhysRevLett.100.066801.
[204] PRINCIPI A, VIGNALE G. Violation of the Wiedemann-Franz Law in Hydrodynamic ElectronLiquids[J/OL]. Physical Review Letters, 2015, 115: 056603. https://link.aps.org/doi/10.1103/PhysRevLett.115.056603.
[205] LUCAS A, DAS SARMA S. Electronic hydrodynamics and the breakdown of the Wiedemann Franz and Mott laws in interacting metals[J/OL]. Physical Review B, 2018, 97: 245128. https://link.aps.org/doi/10.1103/PhysRevB.97.245128.
[206] KIM K S, PÉPIN C. Violation of the Wiedemann-Franz Law at the Kondo Breakdown QuantumCritical Point[J/OL]. Physical Review Letters, 2009, 102: 156404. https://link.aps.org/doi/10.1103/PhysRevLett.102.156404.
[207] BUCCHERI F, NAVA A, EGGER R, et al. Violation of the Wiedemann-Franz law in the topo logical Kondo model[J/OL]. Physical Review B, 2022, 105: L081403. https://link.aps.org/doi/10.1103/PhysRevB.105.L081403.
[208] XU X, YIN J X, MA W, et al. Topological charge-entropy scaling in kagome Chern magnetTbMn _6 Sn _6[J]. arXiv preprint arXiv:2110.07563, 2021.
[209] SINITSYN N A, MACDONALD A H, JUNGWIRTH T, et al. Anomalous Hall effect in atwo-dimensional Dirac band: The link between the Kubo-Streda formula and the semiclassicalBoltzmann equation approach[J/OL]. Physical Review B, 2007, 75: 045315. DOI: 10.1103/PhysRevB.75.045315
修改评论