中文版 | English
题名

QUANTUM TRANSPORT WITH BERRYCURVATURE IN TOPOLOGICAL MATTERS

其他题名
贝里曲率与拓扑物质中的量子输运
姓名
姓名拼音
QIANG Xiaobin
学号
11930610
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
卢海舟
导师单位
物理系
论文答辩日期
2022-05-13
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

输运测量是探索固体材料性质最有力和最直接的方法之一。测量对象主要包 括电流和热流,对应的驱动场是电场和温度梯度场。根据测量对象和驱动场的不 同,可将载流子输运可分为三种,即电输运、热电输运和热输运。第一种在科学 文献和公众传播中更加广为人知,现代物理学中的许多重大发现都与其相关,如 超导体、量子霍尔效应、巨磁阻效应等。相比于电输运后两者虽然没有那么普遍, 但它们仍然是不可或缺的,尤其是在应用科学和工程领域。可见输运测量作为一 种基本的研究方法,在凝聚态物理,材料科学以及工程应用中起着至关重要的作 用。另一方面,贝里相位的发现为凝聚态物理的研究开辟了一条崭新的视角。在过 去,相比于体系的本征能量相位因子并没有得到太多的关注,原因是人们总是可 以增加一个全局的相位因子,而不会影响任何可观测量。然而,自从发现贝里相 位以来,这一认识发生了显著的变化。所谓贝里相位描述的是当一个量子态经过 绝热演化后,除了动力学相位之外,还会累积一个额外的相位。此后的相关发展 证明,这一发现的重要程度不亚于任何一次诺奖级的成果,特别是对凝聚态物理、 量子光学、原子物理和量子信息等邻域产生了极其深远的影响,同时贝利曲率的 发现也让我们对量子力学的本质有了更深刻的理解和认识。近些年来,以拓扑材 料为代表的凝聚态物理的巨大进展很大程度上归功于对量子态几何结构的深入理 解,后者则直接与贝里曲率相关。 狄拉克材料或拓扑材料的主要特征是在费米能级附近具有线性的色散关系, 这意味着电子的低能激发行为需要用相对论性的狄拉克方程来描述,此时被激发 的准粒子也被称为狄拉克费米子。由于这些准粒子是相对论性的,这导致了诸多 与普通费米子相异的特性。一般来说,拓扑物质包括拓扑绝缘体、拓扑半金属和 拓扑超导体。奇异的能带结构以及拓扑保护的新颖表面态使得拓扑物质具有各种 独特的输运性质。本文中我们主要关注拓扑绝缘体和拓扑半金属。拓扑绝缘体的 体态是有能隙的绝缘态,而边界态是无能隙的金属态,这种特殊的无能隙表面态 由于受拓扑保护所以是无耗散的,这一特性突显了拓扑绝缘体在未来电子工业应 用中的巨大潜力。拓扑半金属可以看作是三维的石墨烯,根据对称性,可以将其 简单地分为狄拉克半金属、外尔半金属和节线半金属。其中外尔半金属是最为出 名的,由于其能带的交叉点(外尔点)没有对称性的要求,即不受微扰的影响。外 尔半金属的体态存在成对的贝里曲率单极子,且在某些特殊表面存在受拓扑保护的费米弧表面态。所有这些使得拓扑物质成为探索奇特输运性质的极好平台。 本文中我们首先回顾了一些必要的概念,包括输运模型、贝里曲率和有效哈 密顿量。然后介绍了玻尔兹曼动理学,这是本文进行理论分析的主要方法。基于半 经典输运理论我们给出了一个统一的理论框架来描述各种输运现象,包括电、热 电和热输运。我们证明了这种方法可以从相同的角度出发来处理不同的狄拉克材 料 (拓扑半金属和拓扑绝缘体)。此外,数值结果表明,轨道磁矩可以显著地促进磁 场下输运效应。同时,利用该理论我们对最近的磁阻和磁塞贝克实给出了定量解 释。 此外,我们还探讨了反常输运中的贝里曲率效应。本文主要研究了反常霍尔 效应、反常能斯特效应和反常热霍尔效应中贝曲率的可观测效应,这些输运现象 为探索各种奇异现象提供了极好的平台。威德曼-弗朗兹定律是固体物理中关于热 导率和电导率之比的一个普适关系。本文中我们通过解析和数值分析,发现在高 温下热导率和电导率之比与经典结果有很大的偏离。以 2 维狄拉克模型为出发点, 我们导出了一个对威德曼-弗朗兹定律进行修正的解析公式。该公式的结果是相当 普适的,不依赖于具体的模型细节,只决定于于费米能级的相对位置。我们进一 步指出该解析表达式可以推广到 3 维,并且与相关实验测量 (例如笼目磁体) 吻合 的极好。这些结果将进一步促进对物质的拓扑态及其非平庸相位的深入理解。

关键词
语种
英语
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] BERRY M V. Quantal phase factors accompanying adiabatic changes[J/OL]. Proceedings ofthe Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57.https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023.

[2] XIAO D, CHANG M C, NIU Q. Berry phase effects on electronic properties[J/OL]. Reviews ofModern Physics, 2010, 82: 1959-2007. https://link.aps.org/doi/10.1103/RevModPhys.82.1959.

[3] KLITZING K V, DORDA G, PEPPER M. New method for high-accuracy determination of thefine-structure constant based on quantized Hall resistance[J]. Physical Review Letters, 1980, 45(6): 494.

[4] LAUGHLIN R B. Quantized Hall conductivity in two dimensions[J]. Physical Review B, 1981,23(10): 5632.

[5] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized Hall conductance ina two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405.

[6] HALDANE F D M. Model for a quantum Hall effect without Landau levels: Condensed-matterrealization of the” parity anomaly”[J]. Physical Review Letters, 1988, 61(18): 2015.

[7] HASAN M Z, KANE C L. Colloquium: Topological insulators[J/OL]. Reviews of ModernPhysics, 2010, 82: 3045-3067. https://link.aps.org/doi/10.1103/RevModPhys.82.3045.

[8] QI X L, ZHANG S C. Topological insulators and superconductors[J/OL]. Reviews of ModernPhysics, 2011, 83: 1057-1110. https://link.aps.org/doi/10.1103/RevModPhys.83.1057.

[9] ARMITAGE N, MELE E, VISHWANATH A. Weyl and Dirac semimetals in three-dimensionalsolids[J]. Reviews of Modern Physics, 2018, 90(1): 015001.

[10] NIELSEN H B, NINOMIYA M. Absence of neutrinos on a lattice:(I). Proof by homotopy theory[J]. Nuclear Physics B, 1981, 185(1): 20-40.

[11] NIELSEN H B, NINOMIYA M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal[J]. Physics Letters B, 1983, 130(6): 389-396.

[12] SON D T, SPIVAK B Z. Chiral anomaly and classical negative magnetoresistance of Weylmetals[J/OL]. Physical Review B, 2013, 88: 104412. https://link.aps.org/doi/10.1103/PhysRevB.88.104412.

[13] BURKOV A A. Chiral Anomaly and Diffusive Magnetotransport in Weyl Metals[J/OL]. Phys ical Review Letters, 2014, 113: 247203. https://link.aps.org/doi/10.1103/PhysRevLett.113.247203.

[14] KHARZEEV D E, YEE H U. Anomaly induced chiral magnetic current in a Weyl semimetal:Chiral electronics[J]. Physical Review B, 2013, 88(11): 115119.

[15] PARAMESWARAN S, GROVER T, ABANIN D, et al. Probing the chiral anomaly with non local transport in three-dimensional topological semimetals[J]. Physical Review X, 2014, 4(3):031035

[16] ZHOU J, CHANG H R, XIAO D. Plasmon mode as a detection of the chiral anomaly in Weylsemimetals[J]. Physical Review B, 2015, 91(3): 035114.

[17] SON D T, YAMAMOTO N. Berry curvature, triangle anomalies, and the chiral magnetic effectin Fermi liquids[J]. Physical Review Letters, 2012, 109(18): 181602.

[18] STEPHANOV M, YIN Y. Chiral kinetic theory[J]. Physical Review Letters, 2012, 109(16):162001.

[19] LANDSTEINER K, MEGIAS E, PENA-BENITEZ F. Gravitational anomaly and transportphenomena[J]. Physical Review Letters, 2011, 107(2): 021601.

[20] CHANG M C, YANG M F. Chiral magnetic effect in a two-band lattice model of Weyl semimetal[J]. Physical Review B, 2015, 91(11): 115203.

[21] JIANG Q D, JIANG H, LIU H, et al. Topological imbert-fedorov shift in weyl semimetals[J].Physical Review Letters, 2015, 115(15): 156602.

[22] JIANG Q D, JIANG H, LIU H, et al. Chiral wave-packet scattering in Weyl semimetals[J].Physical Review B, 2016, 93(19): 195165.

[23] CHEN C Z, SONG J, JIANG H, et al. Disorder and metal-insulator transitions in Weyl semimet als[J]. Physical Review Letters, 2015, 115(24): 246603.

[24] CHEN C Z, LIU H, JIANG H, et al. Positive magnetoconductivity of Weyl semimetals in theultraquantum limit[J]. Physical Review B, 2016, 93(16): 165420.

[25] KIM H J, KIM K S, WANG J F, et al. Dirac versus Weyl fermions in topological insulators:Adler-Bell-Jackiw anomaly in transport phenomena[J]. Physical Review Letters, 2013, 111(24):246603.

[26] KIM K S. Role of axion electrodynamics in a Weyl metal: Violation of Wiedemann-Franz law[J/OL]. Physical Review B, 2014, 90: 121108. https://link.aps.org/doi/10.1103/PhysRevB.90.121108.

[27] XIONG J, KUSHWAHA S K, LIANG T, et al. Evidence for the chiral anomaly in the Diracsemimetal Na3Bi[J]. Science, 2015, 350(6259): 413-416.

[28] JEON S, ZHOU B B, GYENIS A, et al. Landau quantization and quasiparticle interference inthe three-dimensional Dirac semimetal Cd 3 As 2[J]. Nature Materials, 2014, 13(9): 851-856.

[29] LIANG T, GIBSON Q, ALI M N, et al. Ultrahigh mobility and giant magnetoresistance in theDirac semimetal Cd 3 As 2[J]. Nature Materials, 2015, 14(3): 280-284.

[30] FENG J, PANG Y, WU D, et al. Large linear magnetoresistance in Dirac semimetal Cd 3 As 2with Fermi surfaces close to the Dirac points[J]. Physical Review B, 2015, 92(8): 081306.

[31] HE L, HONG X, DONG J, et al. Quantum transport evidence for the three-dimensional Diracsemimetal phase in Cd 3 As 2[J]. Physical Review Letters, 2014, 113(24): 246402.

[32] ZHAO Y, LIU H, ZHANG C, et al. Anisotropic Fermi surface and quantum limit transport inhigh mobility three-dimensional Dirac semimetal Cd 3 As 2[J]. Physical Review X, 2015, 5(3):031037.

[33] CAO J, LIANG S, ZHANG C, et al. Landau level splitting in Cd 3 As 2 under high magneticfields[J]. Nature Communications, 2015, 6(1): 1-6.

[34] SHEKHAR C, NAYAK A K, SUN Y, et al. Extremely large magnetoresistance and ultrahighmobility in the topological Weyl semimetal candidate NbP[J]. Nature Physics, 2015, 11(8):645-649.

[35] NARAYANAN A, WATSON M D, BLAKE S F, et al. Linear Magnetoresistance Caused byMobility Fluctuations in 𝑛-Doped Cd3As2[J/OL]. Physical Review Letters, 2015, 114: 117201.https://link.aps.org/doi/10.1103/PhysRevLett.114.117201.

[36] LI C Z, WANG L X, LIU H, et al. Giant negative magnetoresistance induced by the chiralanomaly in individual Cd 3 As 2 nanowires[J]. Nature Communications, 2015, 6(1): 1-7.

[37] LI H, HE H, LU H Z, et al. Negative magnetoresistance in dirac semimetal Cd 3 As 2[J]. NatureCommunications, 2016, 7(1): 1-7.

[38] ZHANG C, ZHANG E, LIU Y, et al. Detection of chiral anomaly and valley transport in Diracsemimetals[J]. arXiv preprint arXiv:1504.07698, 2015.

[39] WANG H, WANG H, LIU H, et al. Observation of superconductivity induced by a point contacton 3D Dirac semimetal Cd 3 As 2 crystals[J]. Nature Materials, 2016, 15(1): 38-42.

[40] AGGARWAL L, GAURAV A, THAKUR G S, et al. Unconventional superconductivity at meso scopic point contacts on the 3D Dirac semimetal Cd 3 As 2[J]. Nature Materials, 2016, 15(1):32-37.

[41] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-induced negativemagnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031023.

[42] ZHANG C L, XU S Y, BELOPOLSKI I, et al. SigNatures of the Adler–Bell–Jackiw chiralanomaly in a Weyl fermion semimetal[J]. Nature Communications, 2016, 7(1): 1-9.

[43] LI Q, KHARZEEV D E, ZHANG C, et al. Chiral magnetic effect in ZrTe 5[J]. Nature Physics,2016, 12(6): 550-554.

[44] CHEN R, CHEN Z, SONG X Y, et al. Magnetoinfrared spectroscopy of Landau levels andZeeman splitting of three-dimensional massless Dirac fermions in ZrTe 5[J]. Physical ReviewLetters, 2015, 115(17): 176404.

[45] ZHENG G, LU J, ZHU X, et al. Transport evidence for the three-dimensional Dirac semimetalphase in ZrT e 5[J]. Physical Review B, 2016, 93(11): 115414.

[46] ZHANG C, GUO C, LU H, et al. Large magnetoresistance over an extended temperature regimein monophosphides of tantalum and niobium[J]. Physical Review B, 2015, 92(4): 041203.

[47] ARNOLD F, SHEKHAR C, WU S C, et al. Negative magnetoresistance without well-definedchirality in the Weyl semimetal TaP[J]. Nature Communications, 2016, 7(1): 1-7.

[48] ZHANG C L, XU S Y, WANG C, et al. Magnetic-tunnelling-induced Weyl node annihilationin TaP[J]. Nature Physics, 2017, 13(10): 979-986.

[49] YANG X, LIU Y, WANG Z, et al. Chiral anomaly induced negative magnetoresistance in topo logical Weyl semimetal NbAs[J]. arXiv preprint arXiv:1506.03190, 2015.

[50] LI Y, WANG Z, LI P, et al. Negative magnetoresistance in Weyl semimetals NbAs and NbP:Intrinsic chiral anomaly and extrinsic effects[J]. Frontiers of Physics, 2017, 12(3): 127205.

[51] WANG Z, ZHENG Y, SHEN Z, et al. Helicity-protected ultrahigh mobility Weyl fermions inNbP[J]. Physical Review B, 2016, 93(12): 121112.

[52] WANG H, LI C K, LIU H, et al. Chiral anomaly and ultrahigh mobility in crystalline HfTe5[J/OL]. Physical Review B, 2016, 93: 165127. https://link.aps.org/doi/10.1103/PhysRevB.93.165127.

[53] LU H Z, SHI J, SHEN S Q. Competition between weak localization and antilocalization intopological surface states[J/OL]. Physical Review Letters, 2011, 107(7): 076801. https://link.aps.org/doi/10.1103/PhysRevLett.107.076801.

[54] LU H Z, SHEN S Q. Finite-temperature conductivity and magnetoconductivity of topologicalinsulators[J/OL]. Physical Review Letters, 2014, 112(14): 146601. https://link.aps.org/doi/10.1103/PhysRevLett.112.146601.

[55] LU H Z, SHEN S Q. Weak antilocalization and localization in disordered and interacting Weylsemimetals[J]. Physical Review B, 2015, 92: 035203.

[56] LU H Z, ZHANG S B, SHEN S Q. High-field magnetoconductivity of topological semimetalswith short-range potential[J]. Physical Review B, 2015, 92(4): 045203.

[57] DAI X, LU H Z, SHEN S Q, et al. Detecting monopole charge in Weyl semimetals via quantuminterference transport[J]. Physical Review B, 2016, 93(16): 161110.

[58] ZHANG S B, LU H Z, SHEN S Q. Linear magnetoconductivity in an intrinsic topological Weylsemimetal[J]. New Journal of Physics, 2016, 18(5): 053039.

[59] WANG C, LU H Z, SHEN S Q. Anomalous phase shift of quantum oscillations in 3D topologicalsemimetals[J]. Physical Review Letters, 2016, 117(7): 077201.

[60] WANG C M, SUN H P, LU H Z, et al. 3D Quantum Hall Effect of Fermi Arcs in TopologicalSemimetals[J/OL]. Physical Review Letters, 2017, 119: 136806. https://link.aps.org/doi/10.1103/PhysRevLett.119.136806.

[61] LI C, WANG C, WAN B, et al. Rules for phase shifts of quantum oscillations in topologicalnodal-line semimetals[J]. Physical Review Letters, 2018, 120(14): 146602.

[62] DAI X, DU Z Z, LU H Z. Negative Magnetoresistance without Chiral Anomaly in TopologicalInsulators[J/OL]. Physical Review Letters, 2017, 119: 166601. https://link.aps.org/doi/10.1103/PhysRevLett.119.166601.

[63] CHEN Y, LU H Z, XIE X. Forbidden backscattering and resistance dip in the quantum limit asa sigNature for topological insulators[J]. Physical Review Letters, 2018, 121(3): 036602.

[64] DU Z Z, WANG C M, LU H Z, et al. Band SigNatures for Strong Nonlinear Hall Effect inBilayer WTe2[J/OL]. Physical Review Letters, 2018, 121: 266601. https://link.aps.org/doi/10.1103/PhysRevLett.121.266601.

[65] DU Z, WANG C, LI S, et al. Disorder-induced nonlinear Hall effect with time-reversal symmetry[J]. Nature Communications, 2019, 10(1): 1-6.

[66] CAO Z, ZHANG H, LÜ H F, et al. Decays of Majorana or Andreev oscillations induced bysteplike spin-orbit coupling[J]. Physical Review Letters, 2019, 122(14): 147701.

[67] ZHANG C L, WANG C, YUAN Z, et al. Non-saturating quantum magnetization in Weylsemimetal TaAs[J]. Nature Communications, 2019, 10(1): 1-7.

[68] ZHANG J, WANG C, GUO C, et al. Anomalous Thermoelectric Effects of ZrTe 5 in and beyondthe Quantum Limit[J]. Physical Review Letters, 2019, 123(19): 196602.63

[69] QIN F, LI S, DU Z Z, et al. Theory for the Charge-Density-Wave Mechanism of 3D QuantumHall Effect[J/OL]. Physical Review Letters, 2020, 125: 206601. https://link.aps.org/doi/10.1103/PhysRevLett.125.206601.

[70] LU H Z, SHEN S Q. Quantum transport in topological semimetals under magnetic fields[J].Frontiers of Physics, 2017, 12(3): 127201.

[71] SUN H P, LU H Z. Quantum transport in topological semimetals under magnetic fields (II)[J].Frontiers of Physics, 2019, 14(3): 33405.

[72] ZHANG C, ZHANG E, WANG W, et al. Room-temperature chiral charge pumping in Diracsemimetals[J]. Nature Communications, 2017, 8(1): 1-9.

[73] ADLER S L. Axial-vector vertex in spinor electrodynamics[J]. Physical Review, 1969, 177(5):2426.

[74] BELL J S, JACKIW R. A PCAC puzzle: 𝜋 0→ 𝛾𝛾 in the 𝜎-model[J]. Il Nuovo Cimento A(1965-1970), 1969, 60(1): 47-61.

[75] WANG J, LI H, CHANG C, et al. Anomalous anisotropic magnetoresistance in topologicalinsulator films[J]. Nano Research, 2012, 5(10): 739-746.

[76] HE H T, LIU H C, LI B K, et al. Disorder-induced linear magnetoresistance in (221) topologicalinsulator Bi2Se3 films[J/OL]. Applied Physics Letters, 2013, 103(3): 031606. https://doi.org/10.1063/1.4816078.

[77] WIEDMANN S, JOST A, FAUQUÉ B, et al. Anisotropic and strong negative magnetoresistancein the three-dimensional topological insulator Bi 2 Se 3[J]. Physical Review B, 2016, 94(8):081302.

[78] WANG L X, YAN Y, ZHANG L, et al. Zeeman effect on surface electron transport in topologicalinsulator Bi 2 Se 3 nanoribbons[J]. Nanoscale, 2015, 7(40): 16687-16694.

[79] BREUNIG O, WANG Z, TASKIN A, et al. Gigantic negative magnetoresistance in the bulk ofa disordered topological insulator[J]. Nature Communications, 2017, 8(1): 1-7.

[80] ASSAF B, PHUPHACHONG T, KAMPERT E, et al. Negative longitudinal magnetoresistancefrom the anomalous N= 0 Landau level in topological materials[J]. Physical Review Letters,2017, 119(10): 106602.

[81] ZHANG M, WANG H, MU K, et al. Topological Phase Transition-Induced Triaxial VectorMagnetoresistance in (Bi1–x In x) 2Se3 Nanodevices[J]. ACS Nano, 2018, 12(2): 1537-1543.

[82] FLECKENSTEIN C, ZIANI N T, TRAUZETTEL B. Chiral anomaly in real space from stablefractional charges at the edge of a quantum spin Hall insulator[J]. Physical Review B, 2016, 94(24): 241406.

[83] ASHCROFT, MERMIN. Solid state physics[M]. Thomson Learning, 1976.

[84] WAN X, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surfacestates in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20):205101.

[85] YANG K Y, LU Y M, RAN Y. Quantum Hall effects in a Weyl semimetal: Possible applicationin pyrochlore iridates[J]. Physical Review B, 2011, 84(7): 075129.

[86] BURKOV A, BALENTS L. Weyl semimetal in a topological insulator multilayer[J]. PhysicalReview Letters, 2011, 107(12): 127205.

[87] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous Hall effect inHgCr 2 Se 4[J]. Physical Review Letters, 2011, 107(18): 186806.

[88] JIANG J H. Tunable topological Weyl semimetal from simple-cubic lattices with staggeredfluxes[J]. Physical Review A, 2012, 85(3): 033640.

[89] YOUNG S M, ZAHEER S, TEO J C, et al. Dirac semimetal in three dimensions[J]. PhysicalReview Letters, 2012, 108(14): 140405.

[90] WANG Z, SUN Y, CHEN X Q, et al. Dirac semimetal and topological phase transitions in A 3Bi (A= Na, K, Rb)[J]. Physical Review B, 2012, 85(19): 195320.

[91] SINGH B, SHARMA A, LIN H, et al. Topological electronic structure and Weyl semimetal inthe TlBiSe 2 class of semiconductors[J]. Physical Review B, 2012, 86(11): 115208.

[92] WANG Z, WENG H, WU Q, et al. Three-dimensional Dirac semimetal and quantum transportin Cd 3 As 2[J]. Physical Review B, 2013, 88(12): 125427.

[93] LIU J, VANDERBILT D. Weyl semimetals from noncentrosymmetric topological insulators[J].Physical Review B, 2014, 90(15): 155316.

[94] BULMASH D, LIU C X, QI X L. Prediction of a Weyl semimetal in Hg 1- x- y Cd x Mn y Te[J]. Physical Review B, 2014, 89(8): 081106.

[95] BRAHLEK M, BANSAL N, KOIRALA N, et al. Topological-metal to band-insulator transitionin (Bi 1- x In x) 2 Se 3 thin films[J]. Physical Review Letters, 2012, 109(18): 186403.

[96] WU L, BRAHLEK M, AGUILAR R V, et al. A sudden collapse in the transport lifetime acrossthe topological phase transition in (Bi 1- x In x) 2 Se 3[J]. Nature Physics, 2013, 9(7): 410-414.

[97] LIU Z, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.

[98] XU S Y, BELOPOLSKI I, ALIDOUST N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs[J]. Science, 2015, 349(6248): 613-617.

[99] LIU Z, JIANG J, ZHOU B, et al. A stable three-dimensional topological Dirac semimetal Cd 3As 2[J]. Nature Materials, 2014, 13(7): 677-681.

[100] NEUPANE M, XU S Y, SANKAR R, et al. Observation of a three-dimensional topologicalDirac semimetal phase in high-mobility Cd 3 As 2[J]. Nature Communications, 2014, 5(1):1-8.

[101] YI H, WANG Z, CHEN C, et al. Evidence of topological surface state in three-dimensionalDirac semimetal Cd 3 As 2[J]. Scientific Reports, 2014, 4: 6106.

[102] BORISENKO S, GIBSON Q, EVTUSHINSKY D, et al. Experimental realization of a three dimensional Dirac semimetal[J]. Physical Review Letters, 2014, 113(2): 027603.

[103] WENG H, FANG C, FANG Z, et al. Weyl semimetal phase in noncentrosymmetric transition metal monophosphides[J]. Physical Review X, 2015, 5(1): 011029.

[104] HUANG S M, XU S Y, BELOPOLSKI I, et al. A Weyl Fermion semimetal with surface Fermiarcs in the transition metal monopnictide TaAs class[J]. Nature Communications, 2015, 6(1):1-6.

[105] LV B, WENG H, FU B, et al. Experimental discovery of Weyl semimetal TaAs[J]. PhysicalReview X, 2015, 5(3): 031013.

[106] BORISENKO S, EVTUSHINSKY D, GIBSON Q, et al. Time-reversal symmetry breakingtype-II Weyl state in YbMnBi 2[J]. Nature Communications, 2019, 10(1): 1-10.

[107] BALENTS L. Weyl electrons kiss[J]. Physics, 2011, 4: 36.

[108] VOLOVIK G E. The universe in a helium droplet: volume 117[M]. Oxford University Press onDemand, 2003: 32-41.

[109] FU B, WANG H W, SHEN S Q. Quantum interference theory of magnetoresistance in Diracmaterials[J]. Physical Review Letters, 2019, 122(24): 246601.

[110] WANG H W, FU B, SHEN S Q. Anomalous Temperature Dependence of Quantum Correctionto the Conductivity of Magnetic Topological Insulators[J/OL]. Physical Review Letters, 2020,124: 206603. https://link.aps.org/doi/10.1103/PhysRevLett.124.206603.

[111] MCCANN E, KECHEDZHI K, FAL’KO V I, et al. Weak-localization magnetoresistance andvalley symmetry in graphene[J]. Physical Review Letters, 2006, 97(14): 146805.

[112] ALTSHULER B L, ARONOV A G, LEE P. Interaction effects in disordered Fermi systems intwo dimensions[J]. Physical Review Letters, 1980, 44(19): 1288.

[113] LEE P A, RAMAKRISHNAN T. Disordered electronic systems[J]. Reviews of Modern Physics,1985, 57(2): 287.

[114] FUKUYAMA H. Effects of interactions on non-metallic behaviors in two-dimensional disor dered systems[J]. Journal of the Physical Society of Japan, 1980, 48(6): 2169-2170.

[115] SHAN W Y, LU H Z, SHEN S Q. Spin-orbit scattering in quantum diffusion of massive Diracfermions[J]. Physical Review B, 2012, 86(12): 125303.

[116] MANZONI G, GRAGNANIELLO L, AUTÈS G, et al. Evidence for a strong topological insu lator phase in ZrTe 5[J]. Physical Review Letters, 2016, 117(23): 237601.

[117] ZHANG J, GUO C, ZHU X, et al. Disruption of the accidental Dirac semimetal state in ZrTe 5under hydrostatic pressure[J]. Physical Review Letters, 2017, 118(20): 206601.

[118] ANDREEV A, SPIVAK B. Longitudinal negative magnetoresistance and magnetotransportphenomena in conventional and topological conductors[J]. Physical Review Letters, 2018, 120(2): 026601.

[119] XIAO D, YAO Y, FANG Z, et al. Berry-Phase Effect in Anomalous Thermoelectric Transport[J/OL]. Physical Review Letters, 2006, 97: 026603. https://link.aps.org/doi/10.1103/PhysRevLett.97.026603.

[120] BERGMAN D L, OGANESYAN V. Theory of Dissipationless Nernst Effects[J/OL]. PhysicalReview Letters, 2010, 104: 066601. https://link.aps.org/doi/10.1103/PhysRevLett.104.066601.

[121] YOKOYAMA T, MURAKAMI S. Transverse magnetic heat transport on the surface of a topo logical insulator[J/OL]. Physical Review B, 2011, 83: 161407. https://link.aps.org/doi/10.1103/PhysRevB.83.161407.

[122] BUI C T, RIVADULLA F. Anomalous and planar Nernst effects in thin films of the half-metallicferromagnet La2/3Sr1/3MnO3[J/OL]. Physical Review B, 2014, 90: 100403. https://link.aps.org/doi/10.1103/PhysRevB.90.100403.66REFERENCES

[123] HIRSCHBERGER M, KUSHWAHA S, WANG Z, et al. The chiral anomaly and thermopowerof Weyl fermions in the half-Heusler GdPtBi[J/OL]. Nature Materials, 2016, 15(11): 1161-1165. https://wwwNature.53yu.com/articles/nmat4684.

[124] SHARMA G, GOSWAMI P, TEWARI S. Nernst and magnetothermal conductivity in a latticemodel of Weyl fermions[J/OL]. Physical Review B, 2016, 93: 035116. https://link.aps.org/doi/10.1103/PhysRevB.93.035116.

[125] NOKY J, GAYLES J, FELSER C, et al. Strong anomalous Nernst effect in collinear magneticWeyl semimetals without net magnetic moments[J/OL]. Physical Review B, 2018, 97: 220405.https://link.aps.org/doi/10.1103/PhysRevB.97.220405.

[126] NANDY S, TARAPHDER A, TEWARI S. Planar thermal Hall effect in Weyl semimetals[J/OL].Physical Review B, 2019, 100: 115139. https://link.aps.org/doi/10.1103/PhysRevB.100.115139.

[127] ZHANG J L, WANG C M, GUO C Y, et al. Anomalous Thermoelectric Effects of ZrTe5inand beyond the Quantum Limit[J/OL]. Physical Review Letters, 2019, 123: 196602. https://link.aps.org/doi/10.1103/PhysRevLett.123.196602.

[128] ZENG C, NANDY S, TEWARI S. Chiral anomaly induced nonlinear Nernst and thermal Halleffects in Weyl semimetals[J]. arXiv preprint arXiv:2012.11590, 2020.

[129] WANG P, CHO C W, TANG F, et al. Giant Nernst effect and field-enhanced transversal 𝑧𝑁T inZrTe5[J/OL]. Physical Review B, 2021, 103: 045203. https://link.aps.org/doi/10.1103/PhysRevB.103.045203.

[130] BEHNIA K, AUBIN H. Nernst effect in metals and superconductors: a review of concepts andexperiments[J]. Reports on Progress in Physics, 2016, 79(4): 046502.

[131] BEHNIA K, MÉASSON M A, KOPELEVICH Y. Oscillating Nernst-Ettingshausen effect inbismuth across the quantum limit[J]. Physical Review Letters, 2007, 98(16): 166602.

[132] FAUQUÉ B, ZHU Z, MURPHY T, et al. Nernst response of the Landau tubes in graphite acrossthe quantum limit[J]. Physical Review Letters, 2011, 106(24): 246405.

[133] FAUQUÉ B, BUTCH N P, SYERS P, et al. Magnetothermoelectric properties of bi 2 se 3[J].Physical Review B, 2013, 87(3): 035133.

[134] LIANG T, GIBSON Q, XIONG J, et al. Evidence for massive bulk Dirac fermions in Pb 1- x Snx Se from Nernst and thermopower experiments[J]. Nature Communications, 2013, 4(1): 1-9.

[135] ZHU Z, LIN X, LIU J, et al. Quantum oscillations, thermoelectric coefficients, and the fermisurface of semimetallic WTe 2[J]. Physical Review Letters, 2015, 114(17): 176601.

[136] SAKAI A, MIZUTA Y P, NUGROHO A A, et al. Giant anomalous Nernst effect and quantum critical scaling in a ferromagnetic semimetal[J]. Nature Physics, 2018, 14(11): 1119-1124.

[137] WAKEHAM N, BANGURA A F, XU X, et al. Gross violation of the Wiedemann–Franz lawin a quasi-one-dimensional conductor[J]. Nature Communications, 2011, 2(1): 1-6.

[138] XU L, LI X, LU X, et al. Finite-temperature violation of the anomalous transverse Wiedemann Franz law[J]. Science Advances, 2020, 6(17): eaaz3522.

[139] DING L, KOO J, XU L, et al. Intrinsic Anomalous Nernst Effect Amplified by Disorder in aHalf-Metallic Semimetal[J/OL]. Physics Review X, 2019, 9: 041061. https://link.aps.org/doi/10.1103/PhysRevX.9.041061.

[140] LI X, XU L, DING L, et al. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: BerryCurvature and Entropy Flow[J/OL]. Physical Review Letters, 2017, 119: 056601. https://link.aps.org/doi/10.1103/PhysRevLett.119.056601.

[141] ONOSE Y, SHIOMI Y, TOKURA Y. Lorenz Number Determination of the DissipationlessNature of the Anomalous Hall Effect in Itinerant Ferromagnets[J/OL]. Physical Review Letters,2008, 100: 016601. https://link.aps.org/doi/10.1103/PhysRevLett.100.016601.

[142] XU L, LI X, DING L, et al. Anomalous transverse response of Co2MnGa and universality ofthe room-temperature 𝛼𝐴𝑖𝑗/𝜎𝐴𝑖𝑗 ratio across topological magnets[J/OL]. Physical Review B, 2020,101: 180404. https://link.aps.org/doi/10.1103/PhysRevB.101.180404.

[143] CHO C W, WANG P, TANG F, et al. Thermal transport properties and some hydrodynamic-likebehavior in three-dimensional topological semimetal ZrTe5[J/OL]. Physical Review B, 2022,105: 085132. https://link.aps.org/doi/10.1103/PhysRevB.105.085132.

[144] FU C, SUN Y, FELSER C. Topological thermoelectrics[J/OL]. APL Materials, 2020, 8(4):040913. https://doi.org/10.1063/5.0005481.

[145] JONES T, FULLER W, WIETING T, et al. Thermoelectric power of HfTe5 and ZrTe5[J]. SolidState Communications, 1982, 42(11): 793-798.

[146] GOOTH J, NIEMANN A C, MENG T, et al. Experimental sigNatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP[J]. Nature, 2017, 547(7663): 324-327.

[147] JIA Z, LI C, LI X, et al. Thermoelectric sigNature of the chiral anomaly in Cd 3 As 2[J]. NatureCommunications, 2016, 7(1): 1-6.

[148] LIANG T, LIN J, GIBSON Q, et al. Anomalous Nernst effect in the dirac semimetal Cd 3 As 2[J]. Physical Review Letters, 2017, 118(13): 136601.

[149] MATUSIAK M, COOPER J, KACZOROWSKI D. Thermoelectric quantum oscillations inZrSiS[J]. Nature Communications, 2017, 8(1): 1-7.

[150] WATZMAN S J, MCCORMICK T M, SHEKHAR C, et al. Dirac dispersion generates unusuallylarge Nernst effect in Weyl semimetals[J]. Physical Review B, 2018, 97(16): 161404.

[151] HALL E H, et al. On a new action of the magnet on electric currents[J]. American Journal ofMathematics, 1879, 2(3): 287-292.

[152] KLITZING K, CHAKRABORTY T, KIM P, et al. 40 years of the quantum Hall effect[J]. NatureReviews Physics, 2020, 2(8): 397-401.

[153] HALL E H. XVIII. On the “Rotational Coefficient” in nickel and cobalt[J]. The London,Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 12(74): 157-172.

[154] KARPLUS R, LUTTINGER J. Hall effect in ferromagnetics[J]. Physical Review, 1954, 95(5):1154.

[155] NAGAOSA N, SINOVA J, ONODA S, et al. Anomalous Hall effect[J/OL]. Reviews of ModernPhysics, 2010, 82: 1539-1592. https://link.aps.org/doi/10.1103/RevModPhys.82.1539.68

[156] BLUNDELL S J, BLUNDELL K M. Concepts in thermal physics[M]. Oxford University Presson Demand, 2010.

[157] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectricmaterials[J]. Angewandte Chemie International Edition, 2009, 48(46): 8616-8639.

[158] DIRAC P A M. The quantum theory of the electron[J]. Proceedings of the Royal Societyof London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, 117(778): 610-624.

[159] DIRAC P A M, et al. The principles of quantum mechanics: number 27[M]. Oxford universitypress, 1981.

[160] SHEN S Q. Topological Insulators: Dirac Equation in Condensed Matter[M]. Springer, 2017.

[161] SUNDARAM G, NIU Q. Wave-packet dynamics in slowly perturbed crystals: Gradient correc tions and Berry-phase effects[J]. Physical Review B, 1999, 59(23): 14915.

[162] CHANG M C, NIU Q. Berry phase, hyperorbits, and the Hofstadter spectrum: Semiclassicaldynamics in magnetic Bloch bands[J/OL]. Physical Review B, 1996, 53: 7010-7023. https://link.aps.org/doi/10.1103/PhysRevB.53.7010.

[163] DATTA S. Electronic transport in mesoscopic systems[M]. Cambridge university press, 1997:23-24.

[164] HAUG H, JAUHO A P. Quantum kinetics in transport and optics of semiconductors: volume 2[M]. Springer, 2008.

[165] HURD. The Hall effect in metals and alloys[M]. Plenum Press, 1972.

[166] YIP S K. Kinetic equation and magneto-conductance for Weyl metal in the clean limit[J]. arXivpreprint arXiv:1508.01010, 2015.

[167] CULCER D, SINOVA J, SINITSYN N A, et al. Semiclassical Spin Transport in Spin-Orbit Coupled Bands[J]. Physical Review Letters, 2004, 93: 046602.

[168] COOPER N R, HALPERIN B I, RUZIN I M. Thermoelectric response of an interacting two dimensional electron gas in a quantizing magnetic field[J]. Physical Review B, 1997, 55: 2344-2359.

[169] XIAO D, SHI J, NIU Q. Berry Phase Correction to Electron Density of States in Solids[J].Physical Review Letters, 2005, 95: 137204.

[170] THONHAUSER T, CERESOLI D, VANDERBILT D, et al. Orbital Magnetization in PeriodicInsulators[J]. Physical Review Letters, 2005, 95: 137205.

[171] ARMITAGE N P, MELE E J, VISHWANATH A. Weyl and Dirac semimetals in three dimensional solids[J/OL]. Reviews of Modern Physics, 2018, 90: 015001. https://link.aps.org/doi/10.1103/RevModPhys.90.015001.

[172] LU H Z, SHEN S Q. Weak antilocalization and localization in disordered and interacting Weylsemimetals[J/OL]. Physical Review B, 2015, 92: 035203. https://link.aps.org/doi/10.1103/PhysRevB.92.035203.

[173] CHEN W, LU H Z, ZILBERBERG O. Weak Localization and Antilocalization in Nodal-LineSemimetals: Dimensionality and Topological Effects[J/OL]. Physical Review Letters, 2019,122: 196603. https://link.aps.org/doi/10.1103/PhysRevLett.122.196603.

[174] FU B, WANG H W, SHEN S Q. Quantum Interference Theory of Magnetoresistance in DiracMaterials[J/OL]. Physical Review Letters, 2019, 122: 246601. https://link.aps.org/doi/10.1103/PhysRevLett.122.246601.

[175] HE H, LI B, LIU H, et al. High-field linear magneto-resistance in topological insulator Bi2Se3thin films[J/OL]. Applied Physics Letters, 2012, 100(3): 032105. https://aip.scitation.org/doi/full/10.1063/1.3677669.

[176] PAN Y, WANG H, LU P, et al. The large unsaturated magnetoresistance of Weyl semimetals[J].arXiv preprint arXiv:1509.03975, 2015.

[177] ALEKSEEV P S, DMITRIEV A P, GORNYI I V, et al. Magnetoresistance in Two-ComponentSystems[J/OL]. Physical Review Letters, 2015, 114: 156601. https://link.aps.org/doi/10.1103/PhysRevLett.114.156601.

[178] SPIVAK B Z, ANDREEV A V. Magnetotransport phenomena related to the chiral anomaly inWeyl semimetals[J/OL]. Physical Review B, 2016, 93: 085107. https://link.aps.org/doi/10.1103/PhysRevB.93.085107.

[179] MA Q, XU S Y, SHEN H, et al. Observation of the nonlinear Hall effect under time-reversal symmetric conditions[J/OL]. Nature, 2019, 565(7739): 337-342. https://www.Nature.com/articles/s41586-018-0807-6.

[180] ZHANG C, ZHANG Y, YUAN X, et al. Quantum Hall effect based on Weyl orbits in Cd 3 As 2[J/OL]. Nature, 2019, 565(7739): 331-336. https://www.Nature.com/articles/s41586-018-0798-3#article-info.

[181] DU Z, WANG C, SUN H P, et al. Quantum theory of the nonlinear Hall effect[J]. NatureCommunications, 2021, 12(1): 1-7.

[182] DU Z, LU H Z, XIE X. Nonlinear Hall effects[J]. Nature Reviews Physics, 2021: 1-9.

[183] CHEN R, LIU T, WANG C M, et al. Field-Tunable One-Sided Higher-Order Topological HingeStates in Dirac Semimetals[J/OL]. Physical Review Letters, 2021, 127: 066801. https://link.aps.org/doi/10.1103/PhysRevLett.127.066801.

[184] CHEN R, WANG C M, LIU T, et al. Quantum Hall effect originated from helical edge states inCd3As2[J/OL]. Physics Review Research, 2021, 3: 033227. https://link.aps.org/doi/10.1103/PhysRevResearch.3.033227.

[185] ANDREEV A V, SPIVAK B Z. Longitudinal Negative Magnetoresistance and Magnetotrans port Phenomena in Conventional and Topological Conductors[J/OL]. Physical Review Letters,2018, 120: 026601. https://link.aps.org/doi/10.1103/PhysRevLett.120.026601.

[186] LANDSTEINER K, MEGÍAS E, PENA-BENITEZ F. Gravitational Anomaly and TransportPhenomena[J/OL]. Physical Review Letters, 2011, 107: 021601. https://link.aps.org/doi/10.1103/PhysRevLett.107.021601.

[187] LUCAS A, DAVISON R A, SACHDEV S. Hydrodynamic theory of thermoelectric transportand negative magnetoresistance in Weyl semimetals[J]. Proceedings of the National Academyof Sciences, 2016, 113(34): 9463-9468.

[188] GOOTH J, NIEMANN A C, MENG T, et al. Experimental sigNatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP[J]. Nature, 2017, 547(7663): 324-327.

[189] DAS K, AGARWAL A. Thermal and gravitational chiral anomaly induced magneto-transportin Weyl semimetals[J/OL]. Physics Review Research, 2020, 2: 013088. https://link.aps.org/doi/10.1103/PhysRevResearch.2.013088.

[190] GAO Y, YANG S A, NIU Q. Intrinsic relative magnetoconductivity of nonmagnetic metals[J/OL]. Physical Review B, 2017, 95: 165135. https://link.aps.org/doi/10.1103/PhysRevB.95.165135.

[191] DAS K, AGARWAL A. Intrinsic Hall conductivities induced by the orbital magnetic moment[J/OL]. Physical Review B, 2021, 103: 125432. https://link.aps.org/doi/10.1103/PhysRevB.103.125432.

[192] ZHANG W, WANG P, GU G, et al. Negative longitudinal magnetothermopower in the topo logical semimetal ZrTe5[J/OL]. Physical Review B, 2020, 102: 115147. https://link.aps.org/doi/10.1103/PhysRevB.102.115147.

[193] XIE Z, WEI X, QIANG X, et al. Crossover behavior in the magnetoresistance of thin flakes ofthe topological material ZrTe5[J/OL]. Physical Review B, 2021, 104: 125439. https://link.aps.org/doi/10.1103/PhysRevB.104.125439.

[194] LU H Z, ZHANG S B, SHEN S Q. High-field magnetoconductivity of topological semimetalswith short-range potential[J/OL]. Physical Review B, 2015, 92: 045203. https://link.aps.org/doi/10.1103/PhysRevB.92.045203.

[195] GAO Y B, HE B, PARKER D, et al. Experimental study of the valence band of Bi2Se3[J/OL].Physical Review B, 2014, 90: 125204. https://link.aps.org/doi/10.1103/PhysRevB.90.125204.

[196] MAHAN G D. Many-Particle physics[M]. Springer Science & Business Media, 2023.

[197] HUANG X, ZHAO L, LONG Y, et al. Observation of the Chiral-Anomaly-Induced NegativeMagnetoresistance in 3D Weyl Semimetal TaAs[J/OL]. Physics Review X, 2015, 5: 031023.https://link.aps.org/doi/10.1103/PhysRevX.5.031023.

[198] WIEDMANN S, JOST A, FAUQUÉ B, et al. Anisotropic and strong negative magnetoresistancein the three-dimensional topological insulator Bi2Se3[J/OL]. Physical Review B, 2016, 94:081302. https://link.aps.org/doi/10.1103/PhysRevB.94.081302.

[199] CHEN R Y, CHEN Z G, SONG X Y, et al. Magnetoinfrared Spectroscopy of Landau Levelsand Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe5[J/OL]. PhysicalReview Letters, 2015, 115: 176404. https://link.aps.org/doi/10.1103/PhysRevLett.115.176404.

[200] TANG F, REN Y, WANG P, et al. Three-dimensional quantum Hall effect and metal–insulatortransition in ZrTe5[J]. Nature, 2019, 569(7757): 537-541.

[201] MAHAJAN R, BARKESHLI M, HARTNOLL S A. Non-Fermi liquids and the Wiedemann Franz law[J/OL]. Physical Review B, 2013, 88: 125107. https://link.aps.org/doi/10.1103/PhysRevB.88.125107.

[202] LAVASANI A, BULMASH D, DAS SARMA S. Wiedemann-Franz law and Fermi liquids[J/OL]. Physical Review B, 2019, 99: 085104. https://link.aps.org/doi/10.1103/PhysRevB.99.085104.

[203] KUBALA B, KÖNIG J, PEKOLA J. Violation of the Wiedemann-Franz Law in a Single Electron Transistor[J/OL]. Physical Review Letters, 2008, 100: 066801. https://link.aps.org/doi/10.1103/PhysRevLett.100.066801.

[204] PRINCIPI A, VIGNALE G. Violation of the Wiedemann-Franz Law in Hydrodynamic ElectronLiquids[J/OL]. Physical Review Letters, 2015, 115: 056603. https://link.aps.org/doi/10.1103/PhysRevLett.115.056603.

[205] LUCAS A, DAS SARMA S. Electronic hydrodynamics and the breakdown of the Wiedemann Franz and Mott laws in interacting metals[J/OL]. Physical Review B, 2018, 97: 245128. https://link.aps.org/doi/10.1103/PhysRevB.97.245128.

[206] KIM K S, PÉPIN C. Violation of the Wiedemann-Franz Law at the Kondo Breakdown QuantumCritical Point[J/OL]. Physical Review Letters, 2009, 102: 156404. https://link.aps.org/doi/10.1103/PhysRevLett.102.156404.

[207] BUCCHERI F, NAVA A, EGGER R, et al. Violation of the Wiedemann-Franz law in the topo logical Kondo model[J/OL]. Physical Review B, 2022, 105: L081403. https://link.aps.org/doi/10.1103/PhysRevB.105.L081403.

[208] XU X, YIN J X, MA W, et al. Topological charge-entropy scaling in kagome Chern magnetTbMn _6 Sn _6[J]. arXiv preprint arXiv:2110.07563, 2021.

[209] SINITSYN N A, MACDONALD A H, JUNGWIRTH T, et al. Anomalous Hall effect in atwo-dimensional Dirac band: The link between the Kubo-Streda formula and the semiclassicalBoltzmann equation approach[J/OL]. Physical Review B, 2007, 75: 045315. DOI: 10.1103/PhysRevB.75.045315

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342762
专题理学院_物理系
推荐引用方式
GB/T 7714
Qiang XB. QUANTUM TRANSPORT WITH BERRYCURVATURE IN TOPOLOGICAL MATTERS[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930610-强晓斌-物理系.pdf(3935KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[强晓斌]的文章
百度学术
百度学术中相似的文章
[强晓斌]的文章
必应学术
必应学术中相似的文章
[强晓斌]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。