[1] Siegel R L, Miller K D, Fuchs H E, et al. Cancer statistics, 2022 [J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[2] Morad G, Helmink B A, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade [J]. Cell, 2021, 184(21): 5309-37.
[3] He X, Xu C. Immune checkpoint signaling and cancer immunotherapy [J]. Cell Res, 2020, 30(8): 660-9.
[4] Ribas A, Wolchok J D. Cancer immunotherapy using checkpoint blockade [J]. Science, 2018, 359(6382): 1350-5.
[5] 王旭晨. 重组腺病毒表达PD-1单抗(Nivolumab)的研究 [D]; 中国科学院大学(中国科学院上海巴斯德研究所), 2019.
[6] Gaikwad S, Agrawal M Y, Kaushik I, et al. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy [J]. Seminars in Cancer Biology, 2022,
[7] Lui Y, Davis S J. LAG-3: a very singular immune checkpoint [J]. Nature Immunology, 2018, 19(12): 1278-9.
[8] Abril-Rodriguez G, Ribas A. SnapShot: Immune Checkpoint Inhibitors [J]. Cancer Cell, 2017, 31(6): 848- e1.
[9] Motzer R J, Tannir N M, Mcdermott D F, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma [J]. N Engl J Med, 2018, 378(14): 1277-90.
[10] Upadhaya S, Neftelino S T, Hodge J P, et al. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials [J]. Nat Rev Drug Discov, 2021, 20(3): 168-9.
[11] Wang D Y, Salem J E, Cohen J V, et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis [J]. JAMA Oncol, 2018, 4(12): 1721-8.
[12] Long G V, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study [J]. Lancet Oncol, 2018, 19(5): 672-81.
[13] Hellmann M D, Ciuleanu T E, Pluzanski A, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden [J]. N Engl J Med, 2018, 378(22): 2093-104.
[14] Chiloiro S, Bianchi A, Giampietro A, et al. The changing clinical spectrum of endocrine adverse events in cancer immunotherapy [J]. Trends Endocrinol Metab, 2022, 33(2): 87-104.
[15] Pillai R N, Behera M, Owonikoko T K, et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature [J]. Cancer, 2018, 124(2): 271-7.
[16] Callahan M K, Postow M A, Wolchok J D. CTLA-4 and PD-1 Pathway Blockade: Combinations in the Clinic [J]. Front Oncol, 2014, 4(385.
[17] Greten F R, Grivennikov S I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences [J]. Immunity, 2019, 51(1): 27-41.
[18] Binnewies M, Roberts E W, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy [J]. Nat Med, 2018, 24(5): 541-50.
[19] Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis [J]. Proc Natl Acad Sci U S A, 2012, 109(39): 15894-9.
[20] Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies [J]. Biotechnol Adv, 2016, 34(5): 803-12.
[21] Span P N, Bussink J. Biology of hypoxia [J]. Semin Nucl Med, 2015, 45(2): 101-9.
[22] Vaupel P, Schlenger K, Knoop C, et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements [J]. Cancer Res, 1991, 51(12): 3316-22.
[23] Helmlinger G, Yuan F, Dellian M, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation [J]. Nat Med, 1997, 3(2): 177-82.
[24] Lee P, Chandel N S, Simon M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond [J]. Nat Rev Mol Cell Biol, 2020, 21(5): 268-83.
[25] Al Tameemi W, Dale T P, Al-Jumaily R M K, et al. Hypoxia-Modified Cancer Cell Metabolism [J]. Front Cell Dev Biol, 2019, 7(4.
[26] Martinez-Reyes I, Chandel N S. Cancer metabolism: looking forward [J]. Nat Rev Cancer, 2021, 21(10): 669-80.
[27] Loscalzo J. Adaptions to Hypoxia and Redox Stress: Essential Concepts Confounded by Misleading Terminology [J]. Circ Res, 2016, 119(4): 511-3.
[28] Murciano-Goroff Y R, Warner A B, Wolchok J D. The future of cancer immunotherapy: microenvironment-targeting combinations [J]. Cell Research, 2020, 30(6): 507-19.
[29] Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy [J]. Immunol Rev, 2018, 281(1): 57-61.
[30] Garlanda C, Mantovani A. Interleukin-1 in tumor progression, therapy, and prevention [J]. Cancer Cell, 2021, 39(8): 1023-7.
[31] Kaplanov I, Carmi Y, Kornetsky R, et al. Blocking IL-1beta reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation [J]. Proc Natl Acad Sci U S A, 2019, 116(4): 1361-9.
[32] Song X, Krelin Y, Dvorkin T, et al. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells [J]. J Immunol, 2005, 175(12): 8200-8.
[33] Huang B, Lei Z, Zhao J, et al. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers [J]. Cancer Lett, 2007, 252(1): 86-92.
[34] De Vlaeminck Y, Gonzalez-Rascon A, Goyvaerts C, et al. Cancer-Associated Myeloid Regulatory Cells [J]. Front Immunol, 2016, 7(113.
[35] De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells [J]. Nature, 2016, 539(7629): 443-7.
[36] Qian B Z, Pollard J W. Macrophage diversity enhances tumor progression and metastasis [J]. Cell, 2010, 141(1): 39-51.
[37] Guerriero J L. Macrophages: The Road Less Traveled, Changing Anticancer Therapy [J]. Trends Mol Med, 2018, 24(5): 472-89.
[38] Koul H, Huh J S, Rove K O, et al. Molecular aspects of renal cell carcinoma: a review [J]. Am J Cancer Res, 2011, 1(2): 240-54.
[39] Bingle L, Brown N J, Lewis C E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies [J]. J Pathol, 2002, 196(3): 254-65.
[40] Obradovic A, Chowdhury N, Haake S M, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages [J]. Cell, 2021, 184(11): 2988-3005 e16.
[41] Anderson N R, Minutolo N G, Gill S, et al. Macrophage-Based Approaches for Cancer Immunotherapy [J]. Cancer Res, 2021, 81(5): 1201-8.
[42] Hinshaw D C, Shevde L A. The Tumor Microenvironment Innately Modulates Cancer Progression [J]. Cancer Res, 2019, 79(18): 4557-66.
[43] Anduran E, Dubois L J, Lambin P, et al. Hypoxia-activated prodrug derivatives of anti-cancer drugs: a patent review 2006 - 2021 [J]. Expert Opin Ther Pat, 2022, 32(1): 1-12.
[44] Wilson W R, Hay M P. Targeting hypoxia in cancer therapy [J]. Nat Rev Cancer, 2011, 11(6): 393-410.
[45] Wang Y, Xiao D, Li J, et al. From prodrug to pro-prodrug: hypoxia-sensitive antibody-drug conjugates [J]. Signal Transduct Target Ther, 2022, 7(1): 20.
[46] Cheng M H Y, Mo Y, Zheng G. Nano versus Molecular: Optical Imaging Approaches to Detect and Monitor Tumor Hypoxia [J]. Adv Healthc Mater, 2021, 10(2): e2001549.
[47] Sharma A, Arambula J F, Koo S, et al. Hypoxia-targeted drug delivery [J]. Chem Soc Rev, 2019, 48(3): 771-813.
[48] Guo X, Liu F, Deng J, et al. Electron-Accepting Micelles Deplete Reduced Nicotinamide Adenine Dinucleotide Phosphate and Impair Two Antioxidant Cascades for Ferroptosis-Induced Tumor Eradication [J]. ACS Nano, 2020, 14(11): 14715-30.
[49] Zhang T X, Zhang Z Z, Yue Y X, et al. A General Hypoxia-Responsive Molecular Container for Tumor-Targeted Therapy [J]. Adv Mater, 2020, 32(28): e1908435.
[50] Hubbell J A, Chilkoti A. Chemistry. Nanomaterials for drug delivery [J]. Science, 2012, 337(6092): 303-5.
[51] Owen S C, Chan D P Y, Shoichet M S. Polymeric micelle stability [J]. Nano Today, 2012, 7(1): 53-65.
[52] Kang N, Perron M E, Prud'homme R E, et al. Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability [J]. Nano Lett, 2005, 5(2): 315-9.
[53] Pedrosa S S, Goncalves C, David L, et al. A novel crosslinked hyaluronic acid nanogel for drug delivery [J]. Macromol Biosci, 2014, 14(11): 1556-68.
[54] Song Q, Zhang G, Wang B, et al. Reinforcing the Combinational Immuno-Oncotherapy of Switching "Cold" Tumor to "Hot" by Responsive Penetrating Nanogels [J]. ACS Appl Mater Interfaces, 2021, 13(31): 36824-38.
[55] Zhou Z, Ma X, Jin E, et al. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery [J]. Biomaterials, 2013, 34(22): 5722-35.
[56] Xu P, Wang L, Zhang X, et al. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus [J]. ACS Appl Mater Interfaces, 2022, 14(1): 214-24.
[57] Niland S, Eble J A. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment [J]. Int J Mol Sci, 2020, 22(1):
[58] Tanaka A, Fukuoka Y, Morimoto Y, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator [J]. J Am Chem Soc, 2015, 137(2): 770-5.
[59] Chen M, Tan Y, Hu J, et al. Injectable Immunotherapeutic Thermogel for Enhanced Immunotherapy Post Tumor Radiofrequency Ablation [J]. Small, 2021, 17(52): e2104773.
[60] Yan X, Sun T, Song Y, et al. In situ Thermal-Responsive Magnetic Hydrogel for Multidisciplinary Therapy of Hepatocellular Carcinoma [J]. Nano Lett, 2022, 22(6): 2251-60.
[61] Guedes G, Wang S, Fontana F, et al. Dual-Crosslinked Dynamic Hydrogel Incorporating {Mo154 } with pH and NIR Responsiveness for Chemo-Photothermal Therapy [J]. Adv Mater, 2021, 33(40): e2007761.
[62] Komatsu S, Tago M, Ando Y, et al. Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release [J]. J Control Release, 2021, 331(1-6.
[63] Wang S, Zheng H, Zhou L, et al. Injectable redox and light responsive MnO2 hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing [J]. Biomaterials, 2020, 260(120314.
[64] Tang M L, Zhou M L, Huang Y A, et al. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer-doxorubicin conjugate-based nanoparticles for cancer therapy [J]. Polym Chem-Uk, 2017, 8(15): 2370-80.
[65] Wibowo D, Hui Y, Middelberg A P, et al. Interfacial engineering for silica nanocapsules [J]. Adv Colloid Interface Sci, 2016, 236(83-100.
[66] Bedard P L, Hyman D M, Davids M S, et al. Small molecules, big impact: 20 years of targeted therapy in oncology [J]. Lancet, 2020, 395(10229): 1078-88.
[67] Islam M T. Diterpenes and Their Derivatives as Potential Anticancer Agents [J]. Phytother Res, 2017, 31(5): 691-712.
[68] Pascolutti M, Quinn R J. Natural products as lead structures: chemical transformations to create lead-like libraries [J]. Drug Discov Today, 2014, 19(3): 215-21.
[69] Ghanbari-Movahed M, Jackson G, Farzaei M H, et al. A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies [J]. Front Pharmacol, 2021, 12(639840.
[70] Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-74.
[71] Lu J M, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications [J]. Curr Vasc Pharmacol, 2009, 7(3): 293-302.
[72] Zhang H, Park S, Huang H, et al. Anticancer effects and potential mechanisms of ginsenoside Rh2 in various cancer types (Review) [J]. Oncol Rep, 2021, 45(4):
[73] Wani M C, Taylor H L, Wall M E, et al. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia [J]. J Am Chem Soc, 1971, 93(9): 2325-7.
[74] Scribano C M, Wan J, Esbona K, et al. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel [J]. Sci Transl Med, 2021, 13(610): eabd4811.
[75] Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy [J]. Cell Mol Biol Lett, 2019, 24(40.
[76] Sharifi-Rad J, Quispe C, Patra J K, et al. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy [J]. Oxid Med Cell Longev, 2021, 2021(3687700.
[77] Holton R A, Somoza C, Kim H B, et al. First Total Synthesis of Taxol .1. Functionalization of the B-Ring [J]. Journal of the American Chemical Society, 1994, 116(4): 1597-8.
[78] Ravindran Menon D, Li Y, Yamauchi T, et al. EGCG Inhibits Tumor Growth in Melanoma by Targeting JAK-STAT Signaling and Its Downstream PD-L1/PD-L2-PD1 Axis in Tumors and Enhancing Cytotoxic T-Cell Responses [J]. Pharmaceuticals (Basel), 2021, 14(11):
[79] Gao Y, Chen X, Fang L, et al. Rhein exerts pro- and anti-inflammatory actions by targeting IKKbeta inhibition in LPS-activated macrophages [J]. Free Radic Biol Med, 2014, 72(104-12.
[80] Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo [J]. Adv Drug Deliv Rev, 2013, 65(1): 71-9.
[81] Ding Y X, Xu Y J, Yang W Z, et al. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy [J]. Nano Today, 2020, 35(
[82] Gong G, Pan J, He Y, et al. Self-assembly of nanomicelles with rationally designed multifunctional building blocks for synergistic chemo-photodynamic therapy [J]. Theranostics, 2022, 12(5): 2028-40.
[83] Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil [J]. Cancer Lett, 2015, 368(1): 7-13.
[84] Patel R D, Raval M K, Pethani T M. Application of a Validated RP-HPLC Method in Solubility and Dissolution Testing for Simultaneous Estimation of Diacerein and Its Active Metabolite Rhein in Presence of Coformers in the Eutectic Tablet Formulation [J]. J Chromatogr Sci, 2021, 59(8): 697-705.
[85] Kianfar S, Keshtkar A R, Zarenezhad B. Graft polymerization of acrylonitrile onto cross-linked (alginate/polyvinyl alcohol) beads initiated by potassium persulfate: synthesis and artificial neural network modeling [J]. Polymer Bulletin, 2021, 78(1): 295-311.
[86] Yang G, Phua S Z F, Lim W Q, et al. A Hypoxia-Responsive Albumin-Based Nanosystem for Deep Tumor Penetration and Excellent Therapeutic Efficacy [J]. Adv Mater, 2019, 31(25): e1901513.
[87] Kraft S, Fernandez-Figueras M T, Richarz N A, et al. PDL1 expression in desmoplastic melanoma is associated with tumor aggressiveness and progression [J]. J Am Acad Dermatol, 2017, 77(3): 534-42.
修改评论