中文版 | English
题名

类普鲁士蓝基正极材料的优化制备及其性能研究

其他题名
STUDY ON OPTIMAL PREPARATION AND PERFORMANCE OF PRUSSIAN BLUE ANALOGUE CATHODE MATERIALS
姓名
姓名拼音
ZHAO Zhenyu
学号
12032306
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
唐永炳
导师单位
中国科学院深圳理工大学(筹)
论文答辩日期
2022-05-06
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

目前以锂离子电池为代表的电化学储能技术已经得到了广泛的开发及应用。然而,随着电子器件、电动汽车等的逐渐普及,锂资源匮乏与分布不均而导致的成本问题严重阻碍了锂离子电池的进一步应用。钠作为锂的同主族、相邻周期的金属,其储量丰富、成本低廉,因此钠离子电池的开发和应用得到了科研工作者和新能源行业的特别关注。钠离子电池具有与锂离子电池类同的工作机理和结构,其负极材料和电解液的研究较为成熟,而正极材料的开发与制备则逐渐成为钠离子电池发展的瓶颈。

类普鲁士蓝材料因其三维框架结构利于钠离子可逆穿梭而被视为一种极具应用前景的正极材料。但由于传统共沉淀方法所制备的类普鲁士蓝材料其结构中存在大量的亚铁氰根空位和水分子,严重影响了其电化学性能。目前常用的解决办法为添加螯合剂来降低沉淀速率,但此种方法容易造成粒径偏大,钠离子在其晶体结构中传输较为困难,从而造成倍率性能较差。本论文主要集中在纳米类普鲁士蓝材料的优化制备及其储钠性能研究,旨在通过不同纳米化方法降低类普鲁士蓝尺寸,增大活性位点并加快离子扩散,最终提升材料的循环性能和倍率性能。具体研究内容如下:

1)两步水热法制备石墨烯包覆类普鲁士蓝复合材料:通过先合成石墨烯包覆的过渡金属氢氧化物前驱体,再将其与亚铁氰化钠反应,利用固相前驱体和类普鲁士蓝的缓慢转化导致类普鲁士蓝材料粒径减小,石墨烯包覆有利于增加电导率。制备出的Ni0.33Co0.67HCF@rGO复合正极材料粒径为100~200 nm,在钠离子半电池中能够提供97.7 mAh g-1的容量;在50 mA g-1的电流密度下经2000圈循环后容量保持率为80.2%;在10 C的充放电倍率下,仍具有70.8 mAh g-1的放电容量。

2)限域空间合成纳米尺寸类普鲁士蓝材料:将亚铁氰根离子嵌入层状双金属氢氧化物层间,再将其与过渡金属盐反应获得晶粒尺寸小至几纳米的类普鲁士蓝材料,作为钠离子半电池的正极材料能够提供82.9 mAh g-1的容量,在50 mA g-1的电流密度下经1750圈循环后容量保持率为74.3%;在10 C的充放电倍率下,仍具有35.6 mAh g-1的放电容量。

其他摘要

At present, the electrochemical energy storage technology has been well developed and widely applied, especially lithium-ion batteries. However, with the gradual popularization of electronic devices, electric vehicles, etc., the cost problem caused by the scarcity and uneven distribution of lithium resources has seriously hindered the further application of lithium-ion batteries. Sodium, a metal element with adjacent period in the same group of lithium, has abundant reserves and low cost. Therefore, the development and application of sodium-ion batteries has received special attention from researchers and new energy enterprises. Na-ion batteries have the same working mechanism and component as lithium-ion batteries. The research on anode materials and electrolytes is relatively mature, while the development and preparation of cathode materials has gradually become a bottleneck in the development of sodium-ion batteries.

Prussian blue analogue materials are regarded as a promising cathode material because of its three-dimensional framework that facilitates the reversible migration of sodium ions. However, prussian blue analogue materials prepared by the traditional co-precipitation method have a large number of ferrocyanide vacancies and water molecules in their structure, which seriously affect their electrochemical performance. The commonly used solution is to add a chelating agent to reduce the precipitation rate; however, this method usually causes large particle size, which would result in poor rate performance. This paper mainly focuses on the optimal preparation of nano-prussian blue analogue materials and their sodium storage properties, aiming to reduce the size of prussian blue analogue materials, increase the active site and facilitate the sodium ion diffusion, and finally improve the cycling performance and rate performance of the materials .The specific research content is as follows:

(1) Preparation and performance of graphene-coated prussian blue analogue composites by two-step hydrothermal method: the material can be fabricated by reacting pre-obtained graphene-coated transition metal hydroxide precursor with sodium ferrocyanide. The slow conversion rate of the solid phase precursor and prussian blue analogue leads to the reduction of prussian blue analogue particle size, and the graphene coating can be benefit for charge transfor. As a result, the Ni0.33Co0.67HCF@rGO composite cathode material with a particle size of 100 to 200 nm can provide a capacity of 97.7 mAh g-1 in a sodium-ion half-cell, and the capacity retention rate is 80.2% after 2000 cycles at a current density of 50 mA g-1; it still has a discharge capacity of 70.8 mAh g-1 at a rate of 1 A g-1.

(2) Confined synthesis of prussian blue analogue nanomaterials: the ferrocyanide ions embedded in the slabs of layered double hydroxide can react with transition metal salts to obtain prussian blue analogue materials with a small grain size of around a few nanometers. As the anode material for sodium ion half-cell, it can provide a capacity of 82.9 mAh g-1, and the capacity retention rate is 74.3% after 1750 cycles; at a rate of 1 A g-1, it still has a discharge capacity of 35.6 mAh g-1.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] Ma J, Li Y, Grundish N S, et al. The 2021 battery technology roadmap[J]. Journal of Physics D: Applied Physics, 2021, 54(18): 183001.
[2] Ren H, Li Y, Ni Q, et al. Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives[J]. Advanced Materials, 2021: 2106171.
[3] Pakseresht S, Kuruahmet D, Guler A, et al. Review-Nanomaterials Green Synthesis for High-Performance Secondary Rechargeable Batteries: Approaches, Challenges, and Perspectives[J]. Journal of The Electrochemical Society, 2022, 169(1): 010534.
[4] Lee M, Hong J, Lopez J, et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate[J]. Nature Energy, 2017, 2(11): 861-868.
[5] Grosjean C, Miranda P H, Perrin M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744.
[6] Thompson A H, Whittingham M S. Transition metal phosphorus trisulfides as battery cathodes.[J]. Materials Research Bulletin, 1977, 12: 741-744.
[7] Qian J, Wu C, Cao Y, et al. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619.
[8] Zhou A J, Cheng W J, Wang W, et al. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000943
[9] Kim S W, Seo D H, Ma X, et al. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
[10] Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033.
[11] Ponrouch A, Goñi A R, Palacín M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88.
[12] Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177.
[13] Shao Y, Xiao J, Wang W, et al. Surface-driven sodium ion energy storage in nanocellular carbon foams[J]. Nano Letters, 2013, 13(8): 3909-14.
[14] Stevens D A, Dahn J R. High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1271-1273.
[15] Muñoz-Márquez M Á, Saurel D, Gómez-Cámer J L, et al. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation[J]. Advanced Energy Materials, 2017, 7(20): 1700463.
[16] Li L, Zheng Y, Zhang S, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340.
[17] Kim Y, Ha K H, Oh S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2014, 20(38): 11980-92.
[18] Ortiz-Vitoriano N, Drewett N E, Gonzalo E, et al. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074.
[19] Nishi Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1-2): 101-106.
[20] Han M H, Gonzalo E, Singh G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102.
[21] Clément R J, Bruce P G, Grey C P. Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials[J]. Journal of The Electrochemical Society, 2015, 162(14): A2589-A2604.
[22] Zhang K, Kim D, Hu Z, et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries[J]. Nature Communications, 2019, 10(1): 5203.
[23] Palomares V, Casas-Cabanas M, Castillo-Martínez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312–2337.
[24] Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688.
[25] Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1-4): 81-85.
[26] Wei F, Zhang Q, Zhang P, et al. Review-Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries[J]. Journal of The Electrochemical Society, 2021, 168(5): 050524.
[27] Delmas C, Braconnier J J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3-4: 165-169.
[28] Lee E, Brown D E, Alp E E, et al. New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in α-NaFeO2[J]. Chemistry of Materials, 2015, 27(19): 6755-6764.
[29] Lei Y, Li X, Liu L, et al. Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides[J]. Chemistry of Materials, 2014, 26(18): 5288-5296.
[30] Guo S, Liu P, Yu H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(20): 5894-9.
[31] Kim J, Kwon J, Kim M, et al. Low-dielectric-constant polyimide aerogel composite films with low water uptake[J]. NPG Asia Materials, 2016, 48(7): 829-834.
[32] Mo Y, Ong S P, Ceder G. Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations[J]. Chemistry of Materials, 2014, 26(18): 5208-5214.
[33] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-82.
[34] Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and Solid-State Chemistry of NaMeO2(Me = 3d Transition Metals)[J]. Advanced Energy Materials, 2018, 8(17): 1703415.
[35] Shacklette L W, Jow T R, Townsend L. Rechargeable Electrodes from Sodium Cobalt Bronzes[J]. Journal of The Electrochemical Society, 1988, 135(11): 2669-2674.
[36] Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10(1): 74-80.
[37] Ma X, Chen H, Ceder G. Electrochemical Properties of Monoclinic NaMnO2[J]. Journal of The Electrochemical Society, 2011, 158(12): A1307-A1312.
[38] Caballero A, Hernán L, Morales J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147.
[39] Billaud J, Singh G, Armstrong A R, et al. Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries[J]. Energy &Environmental Science, 2014, 7(4): 1387-1391.
[40] Zheng C, Radhakrishnan B, Chu I H, et al. Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P2 Oxides[J]. Physical Review Applied, 2017, 7(6): 064003.
[41] Li X, Wang Y, Wu D, et al. Jahn-Teller Assisted Na Diffusion for High Performance Na Ion Batteries[J]. Chemistry of Materials, 2016, 28(18): 6575-6583.
[42] Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-7.
[43] Mortemard De Boisse B, Carlier D, Guignard M, et al. Influence of Mn/Fe Ratio on Electrochemical and Structural Properties of P2-NaxMn1–yFeyO2 Phases as Positive Electrode Material for Na-Ion Batteries[J]. Chemistry of Materials, 2018, 30(21): 7672-7681.
[44] Katcho N A, Carrasco J, Saurel D, et al. Origins of Bistability and Na Ion Mobility Difference in P2- and O3-Na2/3Fe2/3Mn1/3O2Cathode Polymorphs[J]. Advanced Energy Materials, 2017, 7(1): 1601477.
[45] Dose W M, Sharma N, Pramudita J C, et al. Structure-Electrochemical Evolution of a Mn-Rich P2 Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode[J]. Chemistry of Materials, 2017, 29(17): 7416-7423.
[46] Song B, Hu E, Liu J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox[J]. Journal of Materials Chemistry A, 2019, 7(4): 1491-1498.
[47] Maitra U, House R A, Somerville J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295.
[48] Ma C, Alvarado J, Xu J, et al. Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries[J]. Journal of the American Chemical Society, 2017, 139(13): 4835-4845.
[49] Kumakura S, Tahara Y, Sato S, et al. P'2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between Orthorhombic Distortion and Electrochemical Property[J]. Chemistry of Materials, 2017, 29(21): 8958-8962.
[50] Komaba S, Yabuuchi N, Nakayama T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11): 6211-20.
[51] Sathiya M, Hemalatha K, Ramesha K, et al. Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials, 2012, 24(10): 1846-1853.
[52] Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries[J]. Chemical Communications, 2014, 50(28): 3677-80.
[53] Guo H, Wang Y, Han W, et al. Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries[J]. Electrochimica Acta, 2015, 158: 258-263.
[54] Singh G, Aguesse F, Otaegui L, et al. Electrochemical performance of NaFex(Ni0.5Ti0.5)1-xO2 (x=0.2 and x=0.4) cathode for sodium-ion battery[J]. Journal of Power Sources, 2015, 273: 333-339.
[55] Venkatesh G, Kishore B, Viswanatha R, et al. P2-Type Na0.67Mn0.65Fe0.20Ni0.15O2 Microspheres as a Positive Electrode Material with a Promising Electrochemical Performance for Na-Ion Batteries[J]. Journal of The Electrochemical Society, 2017, 164(9): A2176-A2182.
[56] Kim H, Kim H, Ding Z, et al. Recent Progress in Electrode Materials for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2016, 6(19): 1600943.
[57] Kim H, Park I, Seo D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study[J]. Journal of the American Chemical Society, 2012, 134(25): 10369-72.
[58] Barpanda P, Oyama G, Nishimura S, et al. A 3.8-V earth-abundant sodium battery electrode[J]. Nature Communications, 2014, 5: 4358.
[59] Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-91.
[60] A. K. Padhi, K. S. Nanjundaswamy, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
[61] Moreau P, Guyomard D, Gaubicher J, et al. Structure and Stability of Sodium Intercalated Phases in Olivine FePO4[J]. Chemistry of Materials, 2010, 22(14): 4126-4128.
[62] Ali G, Lee J H, Susanto D, et al. Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15422-9.
[63] Mukherjee S, Bin Mujib S, Soares D, et al. Electrode Materials for High-Performance Sodium-Ion Batteries[J]. Materials, 2019, 12: 1952.
[64] Chen M Z, Zhang Y Y, Xing G C, et al. Building High Power Density of Sodium-Ion Batteries: Importance of Multidimensional Diffusion Pathways in Cathode Materials[J]. Frontiers in Chemistry, 2020, 8: 00152.
[65] Jian Z, Han W, Lu X, et al. Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries[J]. Advanced Energy Materials, 2013, 3(2): 156-160.
[66] Fang Y, Xiao L, Ai X, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials, 2015, 27(39): 5895-900.
[67] Rui X, Sun W, Wu C, et al. An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network[J]. Advanced Materials, 2015, 27(42): 6670-6.
[68] Ellis B L, Makahnouk W R, Makimura Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6(10): 749-53.
[69] Euchner H, Clemens O, Reddy M A. Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage[J]. npj Computational Materials, 2019, 5: 31.
[70] Gocheva I D, Nishijima M, Doi T, et al. Mechanochemical synthesis of NaMF3 (M=Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries[J]. Journal of Power Sources, 2009, 187(1): 247-252.
[71] Kitajou A, Komatsu H, Chihara K, et al. Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery[J]. Journal of Power Sources, 2012, 198: 389-392.
[72] Dimov N, Nishimura A, Chihara K, et al. Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium–ion and sodium–ion batteries[J]. Electrochimica Acta, 2013, 110: 214-220.
[73] Yamada Y, Doi T, Tanaka I, et al. Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries[J]. Journal of Power Sources, 2011, 196(10): 4837-4841.
[74] Zhu C, Song K, Van Aken P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4): 2175-80.
[75] Liu Q, Wang D, Yang X, et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life[J]. Journal of Materials Chemistry A, 2015, 3(43): 21478-21485.
[76] Nishijima M, Gocheva I D, Okada S, et al. Cathode properties of metal trifluorides in Li and Na secondary batteries[J]. Journal of Power Sources, 2009, 190(2): 558-562.
[77] Shen Y, Wang X, Hu H, et al. A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries[J]. Journal of Power Sources, 2015, 283: 204-210.
[78] Sun T, Xie J, Guo W, et al. Covalent-Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries[J]. Advanced Energy Materials, 2020, 10(19): 1904199.
[79] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020, 4(3): 127-142.
[80] Zhao Q, Lu Y, Chen J. Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries[J]. Advanced Energy Materials, 2017, 7(8): 1601792.
[81] Rajagopalan R, Tang Y, Jia C, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions[J]. Energy & Environmental Science, 2020, 13(6): 1568-1592.
[82] Wang H, Hu P, Yang J, et al. Renewable-juglone-based high-performance sodium-ion batteries[J]. Advanced Materials, 2015, 27(14): 2348-54.
[83] Hu Y, Tang W, Yu Q, et al. Novel Insoluble Organic Cathodes for Advanced Organic K-Ion Batteries[J]. Advanced Functional Materials, 2020, 30(17): 2000675.
[84] Chen H, Armand M, Demailly G, et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries[J]. ChemSusChem, 2008, 1(4): 348-55.
[85] Zhao C, Chen Z, Wang W, et al. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries[J]. Angewandte Chemie International Edition, 2020, 59(29): 11992-11998.
[86] Lu Y, Hou X, Miao L, et al. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries[J]. Angewandte Chemie International Edition, 2019, 58(21): 7020-7024.
[87] Ahmadabadi V G, Shirvanimoghaddam K, Kerr R, et al. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: 135232.
[88] Chihara K, Chujo N, Kitajou A, et al. Cathode properties of Na2C6O6 for sodium-ion batteries[J]. Electrochimica Acta, 2013, 110: 240-246.
[89] Wang X, Zhang P, Tang X, et al. Structure and Electrical Performance of Na2C6O6 under High Pressure[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17163-17169.
[90] Zhao Q, Wang J, Lu Y, et al. Oxocarbon Salts for Fast Rechargeable Batteries[J]. Angewandte Chemie International Edition, 2016, 55(40): 12528-32.
[91] Kraft A. What a chemistry student should know about the history of Prussian blue[J]. ChemTexts, 2018, 4: 16.
[92] Ruiz-Bermejo M, Menor-Salvan C, Osuna-Esteban S, et al. The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges[J]. Origins of Life and Evolution of Biospheres, 2007, 37(6): 507-21.
[93] Wessells C D, Peddada S V, Huggins R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5.
[94] Neff V D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue[J]. Journal of The Electrochemical Society, 1978, 125(6): 886-887.
[95] Kingo I, Nobuyoshi S, Isamu U. Catalysis of the Reduction of Molecular Oxygen to Water at Prussian Blue Modified Electrodes[J]. Journal of the American Chemical Society, 1984, 106(12): 3423-3429.
[96] Karyakin A A, Gitelmacher O V, Karyakina E E. A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes[J]. Analytical Letters, 1994, 27(15): 2861-2869.
[97] Sindhu S, Narasimha Rao K, Ahuja S, et al. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates[J]. Materials Science and Engineering: B, 2006, 132(1-2): 39-42.
[98] Jurgons R, Seliger C, Hilpert A, et al. Drug loaded magnetic nanoparticles for cancer therapy[J]. Journal of Physics: Condensed Matter, 2006, 18(38): S2893-S2902.
[99] Peng J, Zhang W, Liu Q, et al. Prussian blue analogues for sodium-ion batteries: past, present and future[J]. Advanced Materials, 2021: 2108384.
[100] Li L, Hu Z, Lu Y, et al. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 13050-13056.
[101] Hosaka T, Fukabori T, Kojima H, et al. Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates[J]. ChemSusChem, 2021, 14(4): 1166-1175.
[102] Shi X, Wu Z S, Bao X. Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors[J]. Electrochemical Energy Reviews, 2020, 3(3): 581-612.
[103] Wu X, Liu N, Guo Z, et al. Constructing multi-functional Janus separator toward highly stable lithium batteries[J]. Energy Storage Materials, 2020, 28: 153-159.
[104] Yang D, Tan H T, Rui X H, et al. Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives[J]. Electrochemical Energy Reviews, 2019, 2(3): 395-427.
[105] Sångeland C, Mogensen R, Brandell D, et al. Stable Cycling of Sodium Metal All-Solid-State Batteries with Polycarbonate-Based Polymer Electrolytes[J]. ACS Applied Polymer Materials, 2019, 1(4): 825-832.
[106] Wang C, Kim J, Tang J, et al. New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures[J]. Chem, 2020, 6(1): 19-40.
[107] Lee H W, Wang R Y, Pasta M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nature Communications, 2014, 5: 5280.
[108] Wang C, Kim J, Tang J, et al. Large-Scale Synthesis of MOF-Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents[J]. Angewandte Chemie International Edition, 2020, 59(5): 2066-2070.
[109] Pasta M, Wessells C D, Huggins R A, et al. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage[J]. Nature Communications, 2012, 3: 1149.
[110] Su D, Mcdonagh A, Qiao S Z, et al. High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage[J]. Advanced Materials, 2017, 29(1): 1604007.
[111] Kaneti Y V, Zhang J, He Y-B, et al. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(29): 15356-15366.
[112] Tang J, Salunkhe R R, Zhang H, et al. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons[J]. Scientific Reports, 2016, 6: 30295.
[113] Vaucher S, Li M, Mann S. Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions[J]. Angewandte Chemie International Edition, 2000, 39(10): 1793-1796.
[114] Simonov A, De Baerdemaeker T, Bostrom H L B, et al. Hidden diversity of vacancy networks in Prussian blue analogues[J]. Nature, 2020, 578(7794): 256-260.
[115] Kareis C M, Lapidus S H, Her J H, et al. Non-Prussian blue structures and magnetic ordering of Na2Mn(II)[Mn(II)(CN)6] and Na2Mn(II)[Mn(II)(CN)6].2H2O[J]. Journal of the American Chemical Society, 2012, 134(4): 2246-54.
[116] Yin J W, Shen Y, Li C, et al. In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries[J]. ChemSusChem, 2019, 12(21): 4786-4790.
[117] Xu Y, Wan J, Huang L, et al. Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries[J]. Advanced Energy Materials, 2019, 9(4): 1803158.
[118] Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications, 2020, 11(1): 980.
[119] You Y, Wu X L, Yin Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy &Environmental Science, 2014, 7(5): 1643-1647.
[120] Jia Z, Wang J, Wang Y. Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries[J]. RSC Advances, 2014, 4(43): 22768–22774.
[121] Zhou A, Cheng W, Wang W, et al. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Advanced Energy Materials, 2020, 11(2): 2000943.
[122] Cao Y, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries[J]. Nature Nanotechnology, 2019, 14(3): 200-207.
[123] Peng J, Wang J, Yi H, et al. A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal Prussian Blue Analogs[J]. Advanced Energy Materials, 2018, 8(11): 1702856.
[124] Liu Y, Dai Z, Zhang W, et al. Sulfonic-Group-Grafted Ti3C2Tx MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries[J]. ACS Nano, 2021, 15(5): 9065-9075.
[125] Zhao Q, Song A, Ding S, et al. Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects[J]. Advanced Materials, 2020, 32(50): 2002450.
[126] Wang Q, Mariyappan S, Rousse G, et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution[J]. Nature Materials, 2021, 20(3): 353-361.
[127] Li W, Han C, Wang W, et al. Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate[J]. Advanced Energy Materials, 2019, 10(4): 1903006.
[128] Jiang L, Lu Y, Zhao C, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503.
[129] Ren W, Qin M, Zhu Z, et al. Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching[J]. Nano Letters, 2017, 17(8): 4713-4718.
[130] You Y, Wu X L, Yin Y X, et al. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(45): 14061-14065.
[131] Peng J, Ou M, Yi H, et al. Defect-free-induced Na+ disordering in electrode materials[J]. Energy & Environmental Science, 2021, 14(5): 3130-3140.
[132] Wu X, Wu C, Wei C, et al. Highly Crystallized Na2CoFe(CN)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5393-9.
[133] Song J, Wang L, Lu Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-64.
[134] Yang D, Xu J, Liao X Z, et al. Prussian blue without coordinated water as a superior cathode for sodium-ion batteries[J]. Chemical Communications, 2015, 51(38): 8181-4.
[135] Qin M, Ren W, Jiang R, et al. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3999-4007.
[136] Yan C, Zhao A, Zhong F, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimica Acta, 2020, 332: 135533.
[137] Yang D, Xu J, Liao X Z, et al. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries[J]. Chemical Communications, 2014, 50(87): 13377-80.
[138] Xie M, Xu M, Huang Y, et al. Na2NixCo1−xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J]. Electrochemistry Communications, 2015, 59: 91-94.
[139] Yu S, Li Y, Lu Y, et al. A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries[J]. Journal of Power Sources, 2015, 275: 45-49.
[140] Wang W, Hu Z, Yan Z, et al. Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery[J]. Energy Storage Materials, 2020, 30: 42-51.
[141] Bauer A, Song J, Vail S, et al. The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies[J]. Advanced Energy Materials, 2018, 8(17): 1702869.
[142] Xiang X, Zhang K, Chen J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries[J]. Advanced Materials, 2015, 27(36): 5343-64.
[143] Nai J, Lou X W D. Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion[J]. Advanced Materials, 2019, 31(38): 1706825.
[144] Luo J, Sun S, Peng J, et al. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25317-25322.
[145] He G, Nazar L F. Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127.
[146] Ren W H, Zhu Z X, Qin M S, et al. Prussian White Hierarchical Nanotubes with Surface-Controlled Charge Storage for Sodium-Ion Batteries[J]. Advanced Functional Materials, 2019, 29(15): 1806405.
[147] Hu M, Belik A A, Imura M, et al. Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers[J]. Journal of the American Chemical Society, 2013, 135(1): 384-391.
[148] Zhao Y, Zhang W, Hu M. Well-Defined Cyanometallate Coordination-Polymer Nanoarchitectures Realized by Wet-Chemical Manipulation[J]. ChemNanoMat, 2017, 3(11): 780-789.
[149] Kim D S, Zakaria M B, Park M S, et al. Dual-textured Prussian Blue nanocubes as sodium ion storage materials[J]. Electrochimica Acta, 2017, 240: 300-306.
[150] Yue Y, Binder A J, Guo B, et al. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications[J]. Angewandte Chemie International Edition, 2014, 53(12): 3134-7.
[151] Meng Q, Zhang W, Hu M, et al. Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries[J]. Chemical Communications, 2016, 52(9): 1957-60.
[152] Huang Y, Xie M, Zhang J, et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries[J]. Nano Energy, 2017, 39: 273-283.
[153] Asakura D, Li C H, Mizuno Y, et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability[J]. Journal of the American Chemical Society, 2013, 135(7): 2793-9.
[154] Wan M, Tang Y, Wang L, et al. Core-shell hexacyanoferrate for superior Na-ion batteries[J]. Journal of Power Sources, 2016, 329: 290-296.
[155] Prabakar S J R, Jeong J, Pyo M. Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries[J]. RSC Advances, 2015, 5(47): 37545-37552.
[156] Jiang Y, Yu S, Wang B, et al. Prussian Blue@C Composite as an Ultrahigh-Rate and Long-Life Sodium-Ion Battery Cathode[J]. Advanced Functional Materials, 2016, 26(29): 5315-5321.
[157] You Y, Yao H R, Xin S, et al. Subzero-Temperature Cathode for a Sodium-Ion Battery[J]. Advanced Materials, 2016, 28(33): 7243-8.
[158] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料:工艺技术及生产应用[M]. 化学工业出版社, 2015: 161-168.
[159] Tang R, Wang X, Lian W, et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency[J]. Nature Energy, 2020, 5(8): 587-595.
[160] Theiss F L, Ayoko G A, Frost R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review[J]. Applied Surface Science, 2016, 383: 200-213.
[161] Sun Z, Wu B, Ren Y, et al. Diverse Particle Carriers Prepared by Co-Precipitation and Phase Separation: Formation and Applications[J]. ChemPlusChem, 2021, 86(1): 49-58.
[162] Rao K J, Vaidhyanathan B, Ganguli M, et al. Synthesis of Inorganic Solids Using Microwaves[J]. Chemistry of Materials, 1999, 11(4): 882-895.
[163] Kaufman H S, Fankuchen I. X-RAY DIFFRACTION[J]. Analytical Chemistry, 1949, 21(1): 24-29.
[164] De Souza G a G R, Sigifredo Cortés Paredes R, Saicla Barros F, et al. Characterization of a coating for radioprotection, by X-ray diffraction, scanning electron microscopy, and dispersive energy spectroscopy[J]. Construction and Building Materials, 2022, 321: 126326.
[165] Warren B E. X‐Ray Diffraction Methods[J]. Journal of Applied Physics, 1941, 12(5): 375-384.
[166] 赵孟良, 任延靖. 扫描电子显微镜在植物中的应用研究进展[J]. 电子显微学报, 2021, 40(2): 197-202.
[167] Liu M, Li X. Mechanical properties measurement of materials and devices at micro- and nano-scale by optical methods: A review[J]. Optics and Lasers in Engineering, 2022, 150: 106853.
[168] Mamaeva S N, Maksimov G V, Egorov N V, et al. Scanning electron microscope: A model for determining of main emission characteristics for the Schottky cathode in the mode of working with biological samples[C]. 9th International Conference on Mathematical Modeling, 2021: 040002.
[169] Shipp D W, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences[J]. Advances in Optics and Photonics, 2017, 9(2): 315-427.
[170] Huang C C. Applications of Raman spectroscopy in herbal medicine[J]. Applied Spectroscopy Reviews, 2015, 51(1): 1-11.
[171] 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318.
[172] 杨序纲, 吴琪琳. 拉曼光谱的分析与应用[M]. 国防工业出版社, 2008: 1-18.
[173] 张树霖. 拉曼光谱学与低维纳米半导体[M]. 科学出版社, 2008: 133-140.
[174] 朱自莹, 顾仁敖, 陆天虹. 拉曼光谱在化学中的应用[M]. 东北大学出版社, 1998: 302-307.
[175] Winefordner J D. Raman Spectroscopy for Chemical Analysis[M]. John Wiley & Sons, Inc., 2000: 15-30.
[176] Klobes P, Meyer K, Munro R G. Porosity and Speci Surface Area Measurements for Solid Materials[M]. Special Publication, National Institute of Standards and Technology 2006: 4-11.
[177] Koenig J L. Infrared and Raman Spectroscopy of Polymers[M]. Rapra Technology Limited, 2001: 7-11.
[178] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry[M]. John Wiley & Sons, Inc, 2009: 15-20.
[179] Schrader B. Infrared_and Raman Spectroscopy Methods and Applications[M]. VCH, 1995: 63-77.
[180] Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging[M]. WILEY-VCH 2009:65-105.
[181] Wartewig S. IR And Raman Spectroscopy[M]. WILEY-VCH, 2003: 27-34.
[182] 杨金梅, 张海明, 王旭, 等. 红外光谱和拉曼光谱的联系和区别[J]. 物理与工程, 2014, 24(4): 26-32.
[183] Basu P: Analytical Techniques, Biomass Gasification, Pyrolysis and Torrefaction, 2018: 479-495.
[184] Camuffo D. Measuring Time of Wetness and Moisture in Materials[M]. 2019: 459-482.
[185] Lambert J F. Organic pollutant adsorption on clay minerals[J]. Surface and Interface Chemistry of Clay Minerals, 2018, 9: 195-253.
[186] Elgrishi N, Rountree K J, Mccarthy B D, et al. A Practical Beginner’s Guide to Cyclic Voltammetry[J]. Journal of Chemical Education, 2017, 95(2): 197-206.
[187] Huang X, Wang Z, Knibbe R, et al. Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities[J]. Energy Technology, 2019, 7(8): 1801001.
[188] Puthongkham P, Venton B J. Recent advances in fast-scan cyclic voltammetry[J]. Analyst, 2020, 145(4): 1087-1102.
[189] Bard A J, Faulkner L R. 电化学方法:原理和应用[M]. 化学工业出版社, 2005: 166-167,267-269.
[190] Chang B Y, Park S M. Electrochemical impedance spectroscopy[J]. The Annual Review of Analytical Chemistry 2010, 3: 207-229.
[191] Ciucci F. Modeling electrochemical impedance spectroscopy[J]. Current Opinion in Electrochemistry, 2019, 13: 132-139.

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TQ152
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342764
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
赵振宇. 类普鲁士蓝基正极材料的优化制备及其性能研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032306-赵振宇-南方科技大学.(4638KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵振宇]的文章
百度学术
百度学术中相似的文章
[赵振宇]的文章
必应学术
必应学术中相似的文章
[赵振宇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。