[1] Ma J, Li Y, Grundish N S, et al. The 2021 battery technology roadmap[J]. Journal of Physics D: Applied Physics, 2021, 54(18): 183001.
[2] Ren H, Li Y, Ni Q, et al. Unraveling Anionic Redox for Sodium Layered Oxide Cathodes: Breakthroughs and Perspectives[J]. Advanced Materials, 2021: 2106171.
[3] Pakseresht S, Kuruahmet D, Guler A, et al. Review-Nanomaterials Green Synthesis for High-Performance Secondary Rechargeable Batteries: Approaches, Challenges, and Perspectives[J]. Journal of The Electrochemical Society, 2022, 169(1): 010534.
[4] Lee M, Hong J, Lopez J, et al. High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate[J]. Nature Energy, 2017, 2(11): 861-868.
[5] Grosjean C, Miranda P H, Perrin M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744.
[6] Thompson A H, Whittingham M S. Transition metal phosphorus trisulfides as battery cathodes.[J]. Materials Research Bulletin, 1977, 12: 741-744.
[7] Qian J, Wu C, Cao Y, et al. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619.
[8] Zhou A J, Cheng W J, Wang W, et al. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000943
[9] Kim S W, Seo D H, Ma X, et al. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
[10] Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033.
[11] Ponrouch A, Goñi A R, Palacín M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88.
[12] Ellis B L, Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168-177.
[13] Shao Y, Xiao J, Wang W, et al. Surface-driven sodium ion energy storage in nanocellular carbon foams[J]. Nano Letters, 2013, 13(8): 3909-14.
[14] Stevens D A, Dahn J R. High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1271-1273.
[15] Muñoz-Márquez M Á, Saurel D, Gómez-Cámer J L, et al. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation[J]. Advanced Energy Materials, 2017, 7(20): 1700463.
[16] Li L, Zheng Y, Zhang S, et al. Recent progress on sodium ion batteries: potential high-performance anodes[J]. Energy & Environmental Science, 2018, 11(9): 2310-2340.
[17] Kim Y, Ha K H, Oh S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2014, 20(38): 11980-92.
[18] Ortiz-Vitoriano N, Drewett N E, Gonzalo E, et al. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074.
[19] Nishi Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1-2): 101-106.
[20] Han M H, Gonzalo E, Singh G, et al. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102.
[21] Clément R J, Bruce P G, Grey C P. Review-Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials[J]. Journal of The Electrochemical Society, 2015, 162(14): A2589-A2604.
[22] Zhang K, Kim D, Hu Z, et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries[J]. Nature Communications, 2019, 10(1): 5203.
[23] Palomares V, Casas-Cabanas M, Castillo-Martínez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312–2337.
[24] Ong S P, Chevrier V L, Hautier G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688.
[25] Delmas C, Fouassier C, Hagenmuller P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1-4): 81-85.
[26] Wei F, Zhang Q, Zhang P, et al. Review-Research Progress on Layered Transition Metal Oxide Cathode Materials for Sodium Ion Batteries[J]. Journal of The Electrochemical Society, 2021, 168(5): 050524.
[27] Delmas C, Braconnier J J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3-4: 165-169.
[28] Lee E, Brown D E, Alp E E, et al. New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in α-NaFeO2[J]. Chemistry of Materials, 2015, 27(19): 6755-6764.
[29] Lei Y, Li X, Liu L, et al. Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides[J]. Chemistry of Materials, 2014, 26(18): 5288-5296.
[30] Guo S, Liu P, Yu H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(20): 5894-9.
[31] Kim J, Kwon J, Kim M, et al. Low-dielectric-constant polyimide aerogel composite films with low water uptake[J]. NPG Asia Materials, 2016, 48(7): 829-834.
[32] Mo Y, Ong S P, Ceder G. Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations[J]. Chemistry of Materials, 2014, 26(18): 5208-5214.
[33] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-82.
[34] Kubota K, Kumakura S, Yoda Y, et al. Electrochemistry and Solid-State Chemistry of NaMeO2(Me = 3d Transition Metals)[J]. Advanced Energy Materials, 2018, 8(17): 1703415.
[35] Shacklette L W, Jow T R, Townsend L. Rechargeable Electrodes from Sodium Cobalt Bronzes[J]. Journal of The Electrochemical Society, 1988, 135(11): 2669-2674.
[36] Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10(1): 74-80.
[37] Ma X, Chen H, Ceder G. Electrochemical Properties of Monoclinic NaMnO2[J]. Journal of The Electrochemical Society, 2011, 158(12): A1307-A1312.
[38] Caballero A, Hernán L, Morales J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147.
[39] Billaud J, Singh G, Armstrong A R, et al. Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries[J]. Energy &Environmental Science, 2014, 7(4): 1387-1391.
[40] Zheng C, Radhakrishnan B, Chu I H, et al. Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P2 Oxides[J]. Physical Review Applied, 2017, 7(6): 064003.
[41] Li X, Wang Y, Wu D, et al. Jahn-Teller Assisted Na Diffusion for High Performance Na Ion Batteries[J]. Chemistry of Materials, 2016, 28(18): 6575-6583.
[42] Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-7.
[43] Mortemard De Boisse B, Carlier D, Guignard M, et al. Influence of Mn/Fe Ratio on Electrochemical and Structural Properties of P2-NaxMn1–yFeyO2 Phases as Positive Electrode Material for Na-Ion Batteries[J]. Chemistry of Materials, 2018, 30(21): 7672-7681.
[44] Katcho N A, Carrasco J, Saurel D, et al. Origins of Bistability and Na Ion Mobility Difference in P2- and O3-Na2/3Fe2/3Mn1/3O2Cathode Polymorphs[J]. Advanced Energy Materials, 2017, 7(1): 1601477.
[45] Dose W M, Sharma N, Pramudita J C, et al. Structure-Electrochemical Evolution of a Mn-Rich P2 Na2/3Fe0.2Mn0.8O2 Na-Ion Battery Cathode[J]. Chemistry of Materials, 2017, 29(17): 7416-7423.
[46] Song B, Hu E, Liu J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox[J]. Journal of Materials Chemistry A, 2019, 7(4): 1491-1498.
[47] Maitra U, House R A, Somerville J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295.
[48] Ma C, Alvarado J, Xu J, et al. Exploring Oxygen Activity in the High Energy P2-Type Na0.78Ni0.23Mn0.69O2 Cathode Material for Na-Ion Batteries[J]. Journal of the American Chemical Society, 2017, 139(13): 4835-4845.
[49] Kumakura S, Tahara Y, Sato S, et al. P'2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between Orthorhombic Distortion and Electrochemical Property[J]. Chemistry of Materials, 2017, 29(21): 8958-8962.
[50] Komaba S, Yabuuchi N, Nakayama T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11): 6211-20.
[51] Sathiya M, Hemalatha K, Ramesha K, et al. Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials, 2012, 24(10): 1846-1853.
[52] Yoshida H, Yabuuchi N, Kubota K, et al. P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries[J]. Chemical Communications, 2014, 50(28): 3677-80.
[53] Guo H, Wang Y, Han W, et al. Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries[J]. Electrochimica Acta, 2015, 158: 258-263.
[54] Singh G, Aguesse F, Otaegui L, et al. Electrochemical performance of NaFex(Ni0.5Ti0.5)1-xO2 (x=0.2 and x=0.4) cathode for sodium-ion battery[J]. Journal of Power Sources, 2015, 273: 333-339.
[55] Venkatesh G, Kishore B, Viswanatha R, et al. P2-Type Na0.67Mn0.65Fe0.20Ni0.15O2 Microspheres as a Positive Electrode Material with a Promising Electrochemical Performance for Na-Ion Batteries[J]. Journal of The Electrochemical Society, 2017, 164(9): A2176-A2182.
[56] Kim H, Kim H, Ding Z, et al. Recent Progress in Electrode Materials for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2016, 6(19): 1600943.
[57] Kim H, Park I, Seo D H, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study[J]. Journal of the American Chemical Society, 2012, 134(25): 10369-72.
[58] Barpanda P, Oyama G, Nishimura S, et al. A 3.8-V earth-abundant sodium battery electrode[J]. Nature Communications, 2014, 5: 4358.
[59] Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries[J]. Chemical Reviews, 2013, 113(8): 6552-91.
[60] A. K. Padhi, K. S. Nanjundaswamy, Goodenough J B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
[61] Moreau P, Guyomard D, Gaubicher J, et al. Structure and Stability of Sodium Intercalated Phases in Olivine FePO4[J]. Chemistry of Materials, 2010, 22(14): 4126-4128.
[62] Ali G, Lee J H, Susanto D, et al. Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15422-9.
[63] Mukherjee S, Bin Mujib S, Soares D, et al. Electrode Materials for High-Performance Sodium-Ion Batteries[J]. Materials, 2019, 12: 1952.
[64] Chen M Z, Zhang Y Y, Xing G C, et al. Building High Power Density of Sodium-Ion Batteries: Importance of Multidimensional Diffusion Pathways in Cathode Materials[J]. Frontiers in Chemistry, 2020, 8: 00152.
[65] Jian Z, Han W, Lu X, et al. Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries[J]. Advanced Energy Materials, 2013, 3(2): 156-160.
[66] Fang Y, Xiao L, Ai X, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials, 2015, 27(39): 5895-900.
[67] Rui X, Sun W, Wu C, et al. An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network[J]. Advanced Materials, 2015, 27(42): 6670-6.
[68] Ellis B L, Makahnouk W R, Makimura Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6(10): 749-53.
[69] Euchner H, Clemens O, Reddy M A. Unlocking the potential of weberite-type metal fluorides in electrochemical energy storage[J]. npj Computational Materials, 2019, 5: 31.
[70] Gocheva I D, Nishijima M, Doi T, et al. Mechanochemical synthesis of NaMF3 (M=Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries[J]. Journal of Power Sources, 2009, 187(1): 247-252.
[71] Kitajou A, Komatsu H, Chihara K, et al. Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery[J]. Journal of Power Sources, 2012, 198: 389-392.
[72] Dimov N, Nishimura A, Chihara K, et al. Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium–ion and sodium–ion batteries[J]. Electrochimica Acta, 2013, 110: 214-220.
[73] Yamada Y, Doi T, Tanaka I, et al. Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries[J]. Journal of Power Sources, 2011, 196(10): 4837-4841.
[74] Zhu C, Song K, Van Aken P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2014, 14(4): 2175-80.
[75] Liu Q, Wang D, Yang X, et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life[J]. Journal of Materials Chemistry A, 2015, 3(43): 21478-21485.
[76] Nishijima M, Gocheva I D, Okada S, et al. Cathode properties of metal trifluorides in Li and Na secondary batteries[J]. Journal of Power Sources, 2009, 190(2): 558-562.
[77] Shen Y, Wang X, Hu H, et al. A graphene loading heterogeneous hydrated forms iron based fluoride nanocomposite as novel and high-capacity cathode material for lithium/sodium ion batteries[J]. Journal of Power Sources, 2015, 283: 204-210.
[78] Sun T, Xie J, Guo W, et al. Covalent-Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries[J]. Advanced Energy Materials, 2020, 10(19): 1904199.
[79] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020, 4(3): 127-142.
[80] Zhao Q, Lu Y, Chen J. Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries[J]. Advanced Energy Materials, 2017, 7(8): 1601792.
[81] Rajagopalan R, Tang Y, Jia C, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions[J]. Energy & Environmental Science, 2020, 13(6): 1568-1592.
[82] Wang H, Hu P, Yang J, et al. Renewable-juglone-based high-performance sodium-ion batteries[J]. Advanced Materials, 2015, 27(14): 2348-54.
[83] Hu Y, Tang W, Yu Q, et al. Novel Insoluble Organic Cathodes for Advanced Organic K-Ion Batteries[J]. Advanced Functional Materials, 2020, 30(17): 2000675.
[84] Chen H, Armand M, Demailly G, et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries[J]. ChemSusChem, 2008, 1(4): 348-55.
[85] Zhao C, Chen Z, Wang W, et al. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries[J]. Angewandte Chemie International Edition, 2020, 59(29): 11992-11998.
[86] Lu Y, Hou X, Miao L, et al. Cyclohexanehexone with Ultrahigh Capacity as Cathode Materials for Lithium-Ion Batteries[J]. Angewandte Chemie International Edition, 2019, 58(21): 7020-7024.
[87] Ahmadabadi V G, Shirvanimoghaddam K, Kerr R, et al. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: 135232.
[88] Chihara K, Chujo N, Kitajou A, et al. Cathode properties of Na2C6O6 for sodium-ion batteries[J]. Electrochimica Acta, 2013, 110: 240-246.
[89] Wang X, Zhang P, Tang X, et al. Structure and Electrical Performance of Na2C6O6 under High Pressure[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17163-17169.
[90] Zhao Q, Wang J, Lu Y, et al. Oxocarbon Salts for Fast Rechargeable Batteries[J]. Angewandte Chemie International Edition, 2016, 55(40): 12528-32.
[91] Kraft A. What a chemistry student should know about the history of Prussian blue[J]. ChemTexts, 2018, 4: 16.
[92] Ruiz-Bermejo M, Menor-Salvan C, Osuna-Esteban S, et al. The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges[J]. Origins of Life and Evolution of Biospheres, 2007, 37(6): 507-21.
[93] Wessells C D, Peddada S V, Huggins R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5.
[94] Neff V D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue[J]. Journal of The Electrochemical Society, 1978, 125(6): 886-887.
[95] Kingo I, Nobuyoshi S, Isamu U. Catalysis of the Reduction of Molecular Oxygen to Water at Prussian Blue Modified Electrodes[J]. Journal of the American Chemical Society, 1984, 106(12): 3423-3429.
[96] Karyakin A A, Gitelmacher O V, Karyakina E E. A High-Sensitive Glucose Amperometric Biosensor Based on Prussian Blue Modified Electrodes[J]. Analytical Letters, 1994, 27(15): 2861-2869.
[97] Sindhu S, Narasimha Rao K, Ahuja S, et al. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates[J]. Materials Science and Engineering: B, 2006, 132(1-2): 39-42.
[98] Jurgons R, Seliger C, Hilpert A, et al. Drug loaded magnetic nanoparticles for cancer therapy[J]. Journal of Physics: Condensed Matter, 2006, 18(38): S2893-S2902.
[99] Peng J, Zhang W, Liu Q, et al. Prussian blue analogues for sodium-ion batteries: past, present and future[J]. Advanced Materials, 2021: 2108384.
[100] Li L, Hu Z, Lu Y, et al. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries[J]. Angewandte Chemie International Edition, 2021, 60(23): 13050-13056.
[101] Hosaka T, Fukabori T, Kojima H, et al. Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates[J]. ChemSusChem, 2021, 14(4): 1166-1175.
[102] Shi X, Wu Z S, Bao X. Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors[J]. Electrochemical Energy Reviews, 2020, 3(3): 581-612.
[103] Wu X, Liu N, Guo Z, et al. Constructing multi-functional Janus separator toward highly stable lithium batteries[J]. Energy Storage Materials, 2020, 28: 153-159.
[104] Yang D, Tan H T, Rui X H, et al. Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives[J]. Electrochemical Energy Reviews, 2019, 2(3): 395-427.
[105] Sångeland C, Mogensen R, Brandell D, et al. Stable Cycling of Sodium Metal All-Solid-State Batteries with Polycarbonate-Based Polymer Electrolytes[J]. ACS Applied Polymer Materials, 2019, 1(4): 825-832.
[106] Wang C, Kim J, Tang J, et al. New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures[J]. Chem, 2020, 6(1): 19-40.
[107] Lee H W, Wang R Y, Pasta M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nature Communications, 2014, 5: 5280.
[108] Wang C, Kim J, Tang J, et al. Large-Scale Synthesis of MOF-Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents[J]. Angewandte Chemie International Edition, 2020, 59(5): 2066-2070.
[109] Pasta M, Wessells C D, Huggins R A, et al. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage[J]. Nature Communications, 2012, 3: 1149.
[110] Su D, Mcdonagh A, Qiao S Z, et al. High-Capacity Aqueous Potassium-Ion Batteries for Large-Scale Energy Storage[J]. Advanced Materials, 2017, 29(1): 1604007.
[111] Kaneti Y V, Zhang J, He Y-B, et al. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(29): 15356-15366.
[112] Tang J, Salunkhe R R, Zhang H, et al. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons[J]. Scientific Reports, 2016, 6: 30295.
[113] Vaucher S, Li M, Mann S. Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions[J]. Angewandte Chemie International Edition, 2000, 39(10): 1793-1796.
[114] Simonov A, De Baerdemaeker T, Bostrom H L B, et al. Hidden diversity of vacancy networks in Prussian blue analogues[J]. Nature, 2020, 578(7794): 256-260.
[115] Kareis C M, Lapidus S H, Her J H, et al. Non-Prussian blue structures and magnetic ordering of Na2Mn(II)[Mn(II)(CN)6] and Na2Mn(II)[Mn(II)(CN)6].2H2O[J]. Journal of the American Chemical Society, 2012, 134(4): 2246-54.
[116] Yin J W, Shen Y, Li C, et al. In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries[J]. ChemSusChem, 2019, 12(21): 4786-4790.
[117] Xu Y, Wan J, Huang L, et al. Structure Distortion Induced Monoclinic Nickel Hexacyanoferrate as High-Performance Cathode for Na-Ion Batteries[J]. Advanced Energy Materials, 2019, 9(4): 1803158.
[118] Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications, 2020, 11(1): 980.
[119] You Y, Wu X L, Yin Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy &Environmental Science, 2014, 7(5): 1643-1647.
[120] Jia Z, Wang J, Wang Y. Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries[J]. RSC Advances, 2014, 4(43): 22768–22774.
[121] Zhou A, Cheng W, Wang W, et al. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Advanced Energy Materials, 2020, 11(2): 2000943.
[122] Cao Y, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries[J]. Nature Nanotechnology, 2019, 14(3): 200-207.
[123] Peng J, Wang J, Yi H, et al. A Dual-Insertion Type Sodium-Ion Full Cell Based on High-Quality Ternary-Metal Prussian Blue Analogs[J]. Advanced Energy Materials, 2018, 8(11): 1702856.
[124] Liu Y, Dai Z, Zhang W, et al. Sulfonic-Group-Grafted Ti3C2Tx MXene: A Silver Bullet to Settle the Instability of Polyaniline toward High-Performance Zn-Ion Batteries[J]. ACS Nano, 2021, 15(5): 9065-9075.
[125] Zhao Q, Song A, Ding S, et al. Preintercalation Strategy in Manganese Oxides for Electrochemical Energy Storage: Review and Prospects[J]. Advanced Materials, 2020, 32(50): 2002450.
[126] Wang Q, Mariyappan S, Rousse G, et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution[J]. Nature Materials, 2021, 20(3): 353-361.
[127] Li W, Han C, Wang W, et al. Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate[J]. Advanced Energy Materials, 2019, 10(4): 1903006.
[128] Jiang L, Lu Y, Zhao C, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503.
[129] Ren W, Qin M, Zhu Z, et al. Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching[J]. Nano Letters, 2017, 17(8): 4713-4718.
[130] You Y, Wu X L, Yin Y X, et al. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(45): 14061-14065.
[131] Peng J, Ou M, Yi H, et al. Defect-free-induced Na+ disordering in electrode materials[J]. Energy & Environmental Science, 2021, 14(5): 3130-3140.
[132] Wu X, Wu C, Wei C, et al. Highly Crystallized Na2CoFe(CN)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5393-9.
[133] Song J, Wang L, Lu Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-64.
[134] Yang D, Xu J, Liao X Z, et al. Prussian blue without coordinated water as a superior cathode for sodium-ion batteries[J]. Chemical Communications, 2015, 51(38): 8181-4.
[135] Qin M, Ren W, Jiang R, et al. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3999-4007.
[136] Yan C, Zhao A, Zhong F, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimica Acta, 2020, 332: 135533.
[137] Yang D, Xu J, Liao X Z, et al. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries[J]. Chemical Communications, 2014, 50(87): 13377-80.
[138] Xie M, Xu M, Huang Y, et al. Na2NixCo1−xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J]. Electrochemistry Communications, 2015, 59: 91-94.
[139] Yu S, Li Y, Lu Y, et al. A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries[J]. Journal of Power Sources, 2015, 275: 45-49.
[140] Wang W, Hu Z, Yan Z, et al. Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery[J]. Energy Storage Materials, 2020, 30: 42-51.
[141] Bauer A, Song J, Vail S, et al. The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies[J]. Advanced Energy Materials, 2018, 8(17): 1702869.
[142] Xiang X, Zhang K, Chen J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries[J]. Advanced Materials, 2015, 27(36): 5343-64.
[143] Nai J, Lou X W D. Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion[J]. Advanced Materials, 2019, 31(38): 1706825.
[144] Luo J, Sun S, Peng J, et al. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25317-25322.
[145] He G, Nazar L F. Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127.
[146] Ren W H, Zhu Z X, Qin M S, et al. Prussian White Hierarchical Nanotubes with Surface-Controlled Charge Storage for Sodium-Ion Batteries[J]. Advanced Functional Materials, 2019, 29(15): 1806405.
[147] Hu M, Belik A A, Imura M, et al. Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers[J]. Journal of the American Chemical Society, 2013, 135(1): 384-391.
[148] Zhao Y, Zhang W, Hu M. Well-Defined Cyanometallate Coordination-Polymer Nanoarchitectures Realized by Wet-Chemical Manipulation[J]. ChemNanoMat, 2017, 3(11): 780-789.
[149] Kim D S, Zakaria M B, Park M S, et al. Dual-textured Prussian Blue nanocubes as sodium ion storage materials[J]. Electrochimica Acta, 2017, 240: 300-306.
[150] Yue Y, Binder A J, Guo B, et al. Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications[J]. Angewandte Chemie International Edition, 2014, 53(12): 3134-7.
[151] Meng Q, Zhang W, Hu M, et al. Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries[J]. Chemical Communications, 2016, 52(9): 1957-60.
[152] Huang Y, Xie M, Zhang J, et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries[J]. Nano Energy, 2017, 39: 273-283.
[153] Asakura D, Li C H, Mizuno Y, et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability[J]. Journal of the American Chemical Society, 2013, 135(7): 2793-9.
[154] Wan M, Tang Y, Wang L, et al. Core-shell hexacyanoferrate for superior Na-ion batteries[J]. Journal of Power Sources, 2016, 329: 290-296.
[155] Prabakar S J R, Jeong J, Pyo M. Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries[J]. RSC Advances, 2015, 5(47): 37545-37552.
[156] Jiang Y, Yu S, Wang B, et al. Prussian Blue@C Composite as an Ultrahigh-Rate and Long-Life Sodium-Ion Battery Cathode[J]. Advanced Functional Materials, 2016, 26(29): 5315-5321.
[157] You Y, Yao H R, Xin S, et al. Subzero-Temperature Cathode for a Sodium-Ion Battery[J]. Advanced Materials, 2016, 28(33): 7243-8.
[158] 王伟东, 仇卫华, 丁倩倩. 锂离子电池三元材料:工艺技术及生产应用[M]. 化学工业出版社, 2015: 161-168.
[159] Tang R, Wang X, Lian W, et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency[J]. Nature Energy, 2020, 5(8): 587-595.
[160] Theiss F L, Ayoko G A, Frost R L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review[J]. Applied Surface Science, 2016, 383: 200-213.
[161] Sun Z, Wu B, Ren Y, et al. Diverse Particle Carriers Prepared by Co-Precipitation and Phase Separation: Formation and Applications[J]. ChemPlusChem, 2021, 86(1): 49-58.
[162] Rao K J, Vaidhyanathan B, Ganguli M, et al. Synthesis of Inorganic Solids Using Microwaves[J]. Chemistry of Materials, 1999, 11(4): 882-895.
[163] Kaufman H S, Fankuchen I. X-RAY DIFFRACTION[J]. Analytical Chemistry, 1949, 21(1): 24-29.
[164] De Souza G a G R, Sigifredo Cortés Paredes R, Saicla Barros F, et al. Characterization of a coating for radioprotection, by X-ray diffraction, scanning electron microscopy, and dispersive energy spectroscopy[J]. Construction and Building Materials, 2022, 321: 126326.
[165] Warren B E. X‐Ray Diffraction Methods[J]. Journal of Applied Physics, 1941, 12(5): 375-384.
[166] 赵孟良, 任延靖. 扫描电子显微镜在植物中的应用研究进展[J]. 电子显微学报, 2021, 40(2): 197-202.
[167] Liu M, Li X. Mechanical properties measurement of materials and devices at micro- and nano-scale by optical methods: A review[J]. Optics and Lasers in Engineering, 2022, 150: 106853.
[168] Mamaeva S N, Maksimov G V, Egorov N V, et al. Scanning electron microscope: A model for determining of main emission characteristics for the Schottky cathode in the mode of working with biological samples[C]. 9th International Conference on Mathematical Modeling, 2021: 040002.
[169] Shipp D W, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences[J]. Advances in Optics and Photonics, 2017, 9(2): 315-427.
[170] Huang C C. Applications of Raman spectroscopy in herbal medicine[J]. Applied Spectroscopy Reviews, 2015, 51(1): 1-11.
[171] 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318.
[172] 杨序纲, 吴琪琳. 拉曼光谱的分析与应用[M]. 国防工业出版社, 2008: 1-18.
[173] 张树霖. 拉曼光谱学与低维纳米半导体[M]. 科学出版社, 2008: 133-140.
[174] 朱自莹, 顾仁敖, 陆天虹. 拉曼光谱在化学中的应用[M]. 东北大学出版社, 1998: 302-307.
[175] Winefordner J D. Raman Spectroscopy for Chemical Analysis[M]. John Wiley & Sons, Inc., 2000: 15-30.
[176] Klobes P, Meyer K, Munro R G. Porosity and Speci Surface Area Measurements for Solid Materials[M]. Special Publication, National Institute of Standards and Technology 2006: 4-11.
[177] Koenig J L. Infrared and Raman Spectroscopy of Polymers[M]. Rapra Technology Limited, 2001: 7-11.
[178] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A: Theory and Applications in Inorganic Chemistry[M]. John Wiley & Sons, Inc, 2009: 15-20.
[179] Schrader B. Infrared_and Raman Spectroscopy Methods and Applications[M]. VCH, 1995: 63-77.
[180] Salzer R, Siesler H W. Infrared and Raman Spectroscopic Imaging[M]. WILEY-VCH 2009:65-105.
[181] Wartewig S. IR And Raman Spectroscopy[M]. WILEY-VCH, 2003: 27-34.
[182] 杨金梅, 张海明, 王旭, 等. 红外光谱和拉曼光谱的联系和区别[J]. 物理与工程, 2014, 24(4): 26-32.
[183] Basu P: Analytical Techniques, Biomass Gasification, Pyrolysis and Torrefaction, 2018: 479-495.
[184] Camuffo D. Measuring Time of Wetness and Moisture in Materials[M]. 2019: 459-482.
[185] Lambert J F. Organic pollutant adsorption on clay minerals[J]. Surface and Interface Chemistry of Clay Minerals, 2018, 9: 195-253.
[186] Elgrishi N, Rountree K J, Mccarthy B D, et al. A Practical Beginner’s Guide to Cyclic Voltammetry[J]. Journal of Chemical Education, 2017, 95(2): 197-206.
[187] Huang X, Wang Z, Knibbe R, et al. Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities[J]. Energy Technology, 2019, 7(8): 1801001.
[188] Puthongkham P, Venton B J. Recent advances in fast-scan cyclic voltammetry[J]. Analyst, 2020, 145(4): 1087-1102.
[189] Bard A J, Faulkner L R. 电化学方法:原理和应用[M]. 化学工业出版社, 2005: 166-167,267-269.
[190] Chang B Y, Park S M. Electrochemical impedance spectroscopy[J]. The Annual Review of Analytical Chemistry 2010, 3: 207-229.
[191] Ciucci F. Modeling electrochemical impedance spectroscopy[J]. Current Opinion in Electrochemistry, 2019, 13: 132-139.
修改评论