[1] SCHOEMAKER HANS E, MINK D, WUBBOLTS MARCEL G. Dispelling the Myths--Biocatalysis in Industrial Synthesis [J]. Science, 2003, 299(5613): 1694-7.
[2] FAHRENKAMP-UPPENBRINK J. Chemistry goes green [Z]. American Association for the Advancement of Science. 2002: 798-
[3] ANSORGE-SCHUMACHER M B, THUM O. Immobilised lipases in the cosmetics industry [J]. Chemical Society Reviews, 2013, 42(15): 6475-90.
[4] SHELDON R A, BRADY D. Broadening the scope of biocatalysis in sustainable organic synthesis [J]. ChemSusChem, 2019, 12(13): 2859-81.
[5] ABDELRAHEEM E M M, BUSCH H, HANEFELD U, et al. Biocatalysis explained: from pharmaceutical to bulk chemical production [J]. Reaction Chemistry & Engineering, 2019, 4(11): 1878-94.
[6] PYSER J B, CHAKRABARTY S, ROMERO E O, et al. State-of-the-art biocatalysis [J]. ACS Central Science, 2021, 7(7): 1105-16.
[7] KELLER N P. Fungal secondary metabolism: regulation, function and drug discovery [J]. Nature Reviews Microbiology, 2019, 17(3): 167-80.
[8] CHAKRABARTY S, WANG Y, PERKINS J C, et al. Scalable biocatalytic C–H oxyfunctionalization reactions [J]. Chemical Society Reviews, 2020, 49(22): 8137 -55.
[9] DONG J, FERNáNDEZ‐FUEYO E, HOLLMANN F, et al. Biocatalytic oxidation reactions: a chemist's perspective [J]. Angewandte Chemie International Edition, 2018, 57(30): 9238-61.
[10] DE SANTOS P G, CERVANTES F V, TIEVES F, et al. Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites [J]. Tetrahedron, 2019, 75(13): 1827-31.
[11] NI Y, HOLTMANN D, HOLLMANN F. How Green is Biocatalysis? To Calculate is To Know [J]. ChemCatChem, 2014, 6(4): 930-43.
[12] WHITE M C, ZHAO J. Aliphatic C–H Oxidations for Late-Stage Functionalization [J]. Journal of the American Chemical Society, 2018, 140(43): 13988-4009.
[13] ROSSITER K J. Structure− odor relationships [J]. Chemical reviews, 1996, 96(8): 3201-40.
[14] BURTON S G. Oxidizing enzymes as biocatalysts [J]. Trends in Biotechnology, 2003, 21(12): 543-9.
[15] NEUFELD K, MARIENHAGEN J, SCHWANEBERG U, et al. Benzylic hydroxylation of aromatic compounds by P450 BM3 [J]. Green Chemistry, 2013, 15(9): 2408 -21.参考文献51
[16] CHENAULT H K, WHITESIDES G M. Regeneration of nicotinamide cofactors for use in organic synthesis [J]. Applied Biochemistry and Biotechnology, 1987, 14(2): 147-97.
[17] HOLTMANN D, HOLLMANN F. The oxygen dilemma: a severe challenge for the application of monooxygenases? [J]. ChemBioChem, 2016, 17(15): 1391 -8.
[18] O'REILLY E, KöHLER V, FLITSCH S L, et al. Cytochromes P450 as useful biocatalysts: addressing the limitations [J]. Chemical Communications, 2011, 47(9): 2490-501.
[19] DOYON T J, PERKINS J C, BAKER DOCKREY S A, et al. Chemoenzymatic oQuinone Methide Formation [J]. Journal of the American Chemical Society, 2019, 141(51): 20269-77.
[20] SINGH M S, NAGARAJU A, ANAND N, et al. ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis [J]. RSC Advances, 2014, 4(99): 55924-59.
[21] ZHANG W, BUREK B O, FERNáNDEZ-FUEYO E, et al. Selective Activation of C−H Bonds in a Cascade Process Combining Photochemistry and Biocatalysis [J]. Angewandte Chemie International Edition, 2017, 56(48): 15451-5.
[22] BORMANN S, GOMEZ BARAIBAR A, NI Y, et al. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions [J]. Catalysis Science & Technology, 2015, 5(4): 2038-52.
[23] WANG Y, LAN D, DURRANI R, et al. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? [J]. Current Opinion in Chemical Biology, 2017, 37: 1-9.
[24] ZHANG W, FERNáNDEZ-FUEYO E, NI Y, et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations [J]. Nature Catalysis, 2018, 1(1): 55-62.
[25] TIEVES F, WILLOT S J-P, VAN SCHIE M M C H, et al. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H2O2-Dependent Biocatalytic Oxidation Reactions [J]. Angewandte Chemie International Edition, 2019, 58(23): 7873-7.
[26] BUREK B O, BORMANN S, HOLLMANN F, et al. Hydrogen peroxide driven biocatalysis [J]. Green Chemistry, 2019, 21(12): 3232-49.
[27] SHODA S-I, UYAMA H, KADOKAWA J-I, et al. Enzymes as green catalysts for precision macromolecular synthesis [J]. Chemical reviews, 2016, 116(4): 2307-413.
[28] MEYER J, HOLTMANN D, ANSORGE-SCHUMACHER M B, et al. Development of a continuous process for the lipase-mediated synthesis of peracids [J]. Biochemical Engineering Journal, 2017, 118: 34-40.
[29]MOORE B S. Marine enzymes and specialized metabolism-Part B [M]. Academic Press, 2018.参考文献52
[30] HOFRICHTER M, ULLRICH R. Oxidations catalyzed by fungal peroxygenases [J]. Current Opinion in Chemical Biology, 2014, 19: 116-25.
[31] MARTíNEZ A T, RUIZ-DUEñAS F J, CAMARERO S, et al. Oxidoreductases on their way to industrial biotransformations [J]. Biotechnol Adv, 2017, 35(6): 815 -31.
[32] HORST A E W, BORMANN S, MEYER J, et al. Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita [J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S137-S42.
[33] HERNANDEZ K, BERENGUER-MURCIA A, C RODRIGUES R, et al. Hydrogen peroxide in biocatalysis. A dangerous liaison [J]. Current Organic Chemistry, 2012, 16(22): 2652-72.
[34] STADTMAN E R, LEVINE R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins [J]. Amino Acids, 2003, 25(3): 207 -18.
[35] OANCEA D, STUPARU A, NITA M, et al. Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method [J]. Biophysical Chemistry, 2008, 138(1): 50-4.
[36] AYALA M, BATISTA C V, VAZQUEZ-DUHALT R. Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago [J]. JBIC Journal of Biological Inorganic Chemistry, 2011, 16(1): 63-8.
[37] KARICH A, SCHEIBNER K, ULLRICH R, et al. Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction [J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 238-46.
[38] HERNANDEZ-RUIZ J, ARNAO M B, HINER A N, et al. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2 [J]. Biochemical Journal, 2001, 354(1): 107-14.
[39] KIM S J, JOO J C, KIM H S, et al. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack [J]. Journal of Biotechnology, 2014, 189: 78-85.
[40] VASUDEVAN P T, WEILAND R H. Deactivation of catalase by hydrogen peroxide [J]. Biotechnology and Bioengineering, 1990, 36(8): 783-9.
[41] HAGSTRöM A E, TöRNVALL U, NORDBLAD M, et al. Chemo ‐ enzymatic epoxidation – process options for improving biocatalytic productivity [J]. Biotechnology progress, 2011, 27(1): 67-76.
[42] GONZáLEZ-MARTíNEZ D, RODRíGUEZ-MATA M, MéNDEZ-SáNCHEZ D, et al. Lactonization reactions through hydrolase-catalyzed peracid formation. Use of lipases for chemoenzymatic Baeyer–Villiger oxidations of cyclobutanones [J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 114: 31-6.参考文献53
[43] CHURAKOVA E, ARENDS I W C E, HOLLMANN F. Increasing the Productivity of Peroxidase-Catalyzed Oxyfunctionalization: A Case Study on the Potential of Two -Liquid-Phase Systems [J]. ChemCatChem, 2013, 5(2): 565-8.
[44] BUREK B O, BAHNEMANN D W, BLOH J Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide [J]. ACS Catalysis, 2018, 9(1): 25-37.
[45] LOWELL A N, DEMARS M D, SLOCUM S T, et al. Chemoenzymatic Total Synthesis and Structural Diversification of Tylactone-Based Macrolide Antibiotics through LateStage Polyketide Assembly, Tailoring, and C H Functionalization [J]. Journal of the American Chemical Society, 2017, 139(23): 7913-20.
[46] GETREY L, KRIEG T, HOLLMANN F, et al. Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase [J]. Green Chemistry, 2014, 16(3): 1104-8.
[47] OZBAKIR H F, ANDERSON N T, FAN K-C, et al. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging [J]. Bioconjugate Chemistry, 2020, 31(2): 293-302.
[48] CHIA H E, MARSH E N G, BITEEN J S. Extending fluorescence microscopy into anaerobic environments [J]. Current opinion in chemical biology, 2019, 51: 98 -104.
[49] SEIFERT S, BRAKMANN S. LOV Domains in the Design of Photoresponsive Enzymes [J]. ACS Chem Biol, 2018, 13(8): 1914-20.
[50] DREPPER T, EGGERT T, CIRCOLONE F, et al. Reporter proteins for in vivo fluorescence without oxygen [J]. Nature biotechnology, 2007, 25(4): 443-5.
[51] BUCKLEY A M, PETERSEN J, ROE A J, et al. LOV-based reporters for fluorescence imaging [J]. Current Opinion in Chemical Biology, 2015, 27: 39-45.
[52] LOSI A, GARTNER W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors [J]. Annu Rev Plant Biol, 2012, 63: 49-72.
[53] SHCHERBAKOVA D M, SHEMETOV A A, KABERNIUK A A, et al. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools [J]. Annual review of biochemistry, 2015, 84: 519-50.
[54] CHAPMAN S, FAULKNER C, KAISERLI E, et al. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection [J]. Proceedings of the National Academy of Sciences, 2008, 105(50): 20038-43.
[55] RODRIGUEZ E A, CAMPBELL R E, LIN J Y, et al. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins [J]. Trends in Biochemical Sciences, 2017, 42(2): 111-29.
[56] MUKHERJEE A, WEYANT K B, AGRAWAL U, et al. Engineering and Characterization of New LOV-Based Fluorescent Proteins from Chlamydomonas reinhardtii and Vaucheria frigida [J]. ACS Synthetic Biology, 2015, 4(4): 371 -7.参考文献54
[57] ENDRES S, WINGEN M, TORRA J, et al. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria [J]. Scientific Reports, 2018, 8(1): 15021.
[58] SHU X, LEV-RAM V, DEERINCK T J, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms [J]. PLoS biology, 2011, 9(4): e1001041.
[59] PEREZ D I, GRAU M M, ARENDS I W C E, et al. Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions [J]. Chemical Communications, 2009, (44): 6848-50.
[60] COLPA D I, LONCAR N, SCHMIDT M, et al. Creating Oxidase-Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions [J]. Chembiochem, 2017, 18(22): 2226 -30.
[61] MCKEE L S, PENA M J, ROGOWSKI A, et al. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains [J]. Proc Natl Acad Sci U S A, 2012, 109(17): 6537-42.
[62] MORAIS S, MORAG E, BARAK Y, et al. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes [J]. mBio, 2012, 3(6).
[63] ELLEUCHE S. Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications [J]. Appl Microbiol Biotechnol, 2015, 99(4): 1545-56.
[64] YANG H, LIU L, XU F. The promises and challenges of fusion constructs in protein biochemistry and enzymology [J]. Appl Microbiol Biotechnol, 2016, 100(19): 8273-81.
[65] ZUCKERKANDL E, PAULING L. Evolutionary divergence and convergence in proteins [M]. Evolving genes and proteins. Elsevier. 1965: 97-166.
[66] BLOOM JESSE D, ARNOLD FRANCES H. In the light of directed evolution: Pathways of adaptive protein evolution [J]. Proceedings of the National Academy of Sciences, 2009, 106(supplement_1): 9995-10000.
[67] STEMMER W P. Rapid evolution of a protein in vitro by DNA shuffling [J]. Nature, 1994, 370(6488): 389-91.
[68] MOLINA-ESPEJA P, GARCIA-RUIZ E, GONZALEZ-PEREZ D, et al. Directed Evolution of Unspecific Peroxygenase from Agrocybe aegerita [J]. Applied and Environmental Microbiology, 2014, 80(11): 3496-507.
[69] MOLINA-ESPEJA P, MA S, MATE D M, et al. Tandem-yeast expression system forengineering and producing unspecific peroxygenase [J]. Enzyme and Microbial Technology, 2015, 73-74: 29-33.
[70] FOWLER D M, FIELDS S. Deep mutational scanning: a new style of protein science [J]. Nature Methods, 2014, 11(8): 801-7.
[71] SI T, XUE P, CHOE K, et al. High-Throughput Mass Spectrometry Complements Protein Engineering [J]. Protein Engineering, 2021: 57-79.参考文献55
[72] MUKHERJEE A, SCHROEDER C M. Flavin-based fluorescent proteins: emerging paradigms in biological imaging [J]. Current Opinion in Biotechnology, 2015, 31: 16-23.
[73] KWON Y-C, JEWETT M C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis [J]. Scientific Reports, 2015, 5(1): 8663.
[74] ZHANG X, CHEN X, HONG H, et al. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering [J]. Bioactive materials, 2022, 10: 15-31.
[75] WEI H, LI Z, HU S, et al. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK [J]. Journal of Cellular Biochemistry, 2010, 111(4): 967-78.
修改评论