中文版 | English
题名

CreiLOV 催化过氧化氢生成能力的表征与工程改造

其他题名
CHARACTERIZATION AND ENGINEERING OF CREILOV'S ABILITY TO CATALYZE THE PRODUCTION OF HYDROGEN PEROXIDE
姓名
姓名拼音
ZHANG Yating
学号
12032289
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
司同
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2022-05-10
论文提交日期
2022-06-14
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

过氧化氢与氧化酶结合在基于生物催化实现选择性氧化反应方面具有 潜力,但其高浓度下导致生物酶失活是走向工业应用场景面临的主要问题 之一。酶催化原位生成过氧化氢有望避免外源添加过氧化氢带来的问题, 因此本项目希望重组表达核黄素荧光蛋白 CreiLOV 并表征其光照下催化产 生过氧化氢的能力。 本项工作构建了含 CreiLOV 基因的重组表达质粒,成功进行了目的蛋 白的表达及纯化,探究了不同构建的组氨酸标签的 CreiLOV 荧光蛋白在不 同容器中进行光反应产过氧化氢的能力;构建了 CreiLOV 荧光蛋白单点饱 和突变扫描文库,比较了野生型和荧光强度改变突变体蛋白产过氧化氢能 力;为了能够高通量筛选蛋白质突变体文库,探索了不同裂解方式,以实 现在细胞裂解粗酶液中对 CreiLOV 的催化性能进行检测。 经过文中的工作,得到了纯度较高的带组氨酸标签的 CreiLOV。我们 确定了光反应的容器 10 mL 螺纹口透明玻璃瓶和最适的构建 N-His CreiLOV 以进行批量蛋白样品光反应实验。基于此反应体系可以较好地表征蛋白样 品在光照下催化产生过氧化氢的能力,并确定了其与荧光改变没有相关关 系。建立了用生物酶裂解方法直接制备包含无组氨酸标签 WT CreiLOV 蛋 白的细菌粗提物并进行批量、快速检测的体系。我们确立了 CreiLOV 突变 体文库高通量筛选的方法,为将来基于蛋白质工程提高 CreiLOV 产过氧化 氢能力、应用于酶法选择性氧化催化的研究奠定了基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] SCHOEMAKER HANS E, MINK D, WUBBOLTS MARCEL G. Dispelling the Myths--Biocatalysis in Industrial Synthesis [J]. Science, 2003, 299(5613): 1694-7.
[2] FAHRENKAMP-UPPENBRINK J. Chemistry goes green [Z]. American Association for the Advancement of Science. 2002: 798-
[3] ANSORGE-SCHUMACHER M B, THUM O. Immobilised lipases in the cosmetics industry [J]. Chemical Society Reviews, 2013, 42(15): 6475-90.
[4] SHELDON R A, BRADY D. Broadening the scope of biocatalysis in sustainable organic synthesis [J]. ChemSusChem, 2019, 12(13): 2859-81.
[5] ABDELRAHEEM E M M, BUSCH H, HANEFELD U, et al. Biocatalysis explained: from pharmaceutical to bulk chemical production [J]. Reaction Chemistry & Engineering, 2019, 4(11): 1878-94.
[6] PYSER J B, CHAKRABARTY S, ROMERO E O, et al. State-of-the-art biocatalysis [J]. ACS Central Science, 2021, 7(7): 1105-16.
[7] KELLER N P. Fungal secondary metabolism: regulation, function and drug discovery [J]. Nature Reviews Microbiology, 2019, 17(3): 167-80.
[8] CHAKRABARTY S, WANG Y, PERKINS J C, et al. Scalable biocatalytic C–H oxyfunctionalization reactions [J]. Chemical Society Reviews, 2020, 49(22): 8137 -55.
[9] DONG J, FERNáNDEZ‐FUEYO E, HOLLMANN F, et al. Biocatalytic oxidation reactions: a chemist's perspective [J]. Angewandte Chemie International Edition, 2018, 57(30): 9238-61.
[10] DE SANTOS P G, CERVANTES F V, TIEVES F, et al. Benchmarking of laboratory evolved unspecific peroxygenases for the synthesis of human drug metabolites [J]. Tetrahedron, 2019, 75(13): 1827-31.
[11] NI Y, HOLTMANN D, HOLLMANN F. How Green is Biocatalysis? To Calculate is To Know [J]. ChemCatChem, 2014, 6(4): 930-43.
[12] WHITE M C, ZHAO J. Aliphatic C–H Oxidations for Late-Stage Functionalization [J]. Journal of the American Chemical Society, 2018, 140(43): 13988-4009.
[13] ROSSITER K J. Structure− odor relationships [J]. Chemical reviews, 1996, 96(8): 3201-40.
[14] BURTON S G. Oxidizing enzymes as biocatalysts [J]. Trends in Biotechnology, 2003, 21(12): 543-9.
[15] NEUFELD K, MARIENHAGEN J, SCHWANEBERG U, et al. Benzylic hydroxylation of aromatic compounds by P450 BM3 [J]. Green Chemistry, 2013, 15(9): 2408 -21.参考文献51
[16] CHENAULT H K, WHITESIDES G M. Regeneration of nicotinamide cofactors for use in organic synthesis [J]. Applied Biochemistry and Biotechnology, 1987, 14(2): 147-97.
[17] HOLTMANN D, HOLLMANN F. The oxygen dilemma: a severe challenge for the application of monooxygenases? [J]. ChemBioChem, 2016, 17(15): 1391 -8.
[18] O'REILLY E, KöHLER V, FLITSCH S L, et al. Cytochromes P450 as useful biocatalysts: addressing the limitations [J]. Chemical Communications, 2011, 47(9): 2490-501.
[19] DOYON T J, PERKINS J C, BAKER DOCKREY S A, et al. Chemoenzymatic oQuinone Methide Formation [J]. Journal of the American Chemical Society, 2019, 141(51): 20269-77.
[20] SINGH M S, NAGARAJU A, ANAND N, et al. ortho-Quinone methide (o-QM): a highly reactive, ephemeral and versatile intermediate in organic synthesis [J]. RSC Advances, 2014, 4(99): 55924-59.
[21] ZHANG W, BUREK B O, FERNáNDEZ-FUEYO E, et al. Selective Activation of C−H Bonds in a Cascade Process Combining Photochemistry and Biocatalysis [J]. Angewandte Chemie International Edition, 2017, 56(48): 15451-5.
[22] BORMANN S, GOMEZ BARAIBAR A, NI Y, et al. Specific oxyfunctionalisations catalysed by peroxygenases: opportunities, challenges and solutions [J]. Catalysis Science & Technology, 2015, 5(4): 2038-52.
[23] WANG Y, LAN D, DURRANI R, et al. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? [J]. Current Opinion in Chemical Biology, 2017, 37: 1-9.
[24] ZHANG W, FERNáNDEZ-FUEYO E, NI Y, et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations [J]. Nature Catalysis, 2018, 1(1): 55-62.
[25] TIEVES F, WILLOT S J-P, VAN SCHIE M M C H, et al. Formate Oxidase (FOx) from Aspergillus oryzae: One Catalyst Enables Diverse H2O2-Dependent Biocatalytic Oxidation Reactions [J]. Angewandte Chemie International Edition, 2019, 58(23): 7873-7.
[26] BUREK B O, BORMANN S, HOLLMANN F, et al. Hydrogen peroxide driven biocatalysis [J]. Green Chemistry, 2019, 21(12): 3232-49.
[27] SHODA S-I, UYAMA H, KADOKAWA J-I, et al. Enzymes as green catalysts for precision macromolecular synthesis [J]. Chemical reviews, 2016, 116(4): 2307-413.
[28] MEYER J, HOLTMANN D, ANSORGE-SCHUMACHER M B, et al. Development of a continuous process for the lipase-mediated synthesis of peracids [J]. Biochemical Engineering Journal, 2017, 118: 34-40.
[29]MOORE B S. Marine enzymes and specialized metabolism-Part B [M]. Academic Press, 2018.参考文献52
[30] HOFRICHTER M, ULLRICH R. Oxidations catalyzed by fungal peroxygenases [J]. Current Opinion in Chemical Biology, 2014, 19: 116-25.
[31] MARTíNEZ A T, RUIZ-DUEñAS F J, CAMARERO S, et al. Oxidoreductases on their way to industrial biotransformations [J]. Biotechnol Adv, 2017, 35(6): 815 -31.
[32] HORST A E W, BORMANN S, MEYER J, et al. Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of Agrocybe aegerita [J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S137-S42.
[33] HERNANDEZ K, BERENGUER-MURCIA A, C RODRIGUES R, et al. Hydrogen peroxide in biocatalysis. A dangerous liaison [J]. Current Organic Chemistry, 2012, 16(22): 2652-72.
[34] STADTMAN E R, LEVINE R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins [J]. Amino Acids, 2003, 25(3): 207 -18.
[35] OANCEA D, STUPARU A, NITA M, et al. Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method [J]. Biophysical Chemistry, 2008, 138(1): 50-4.
[36] AYALA M, BATISTA C V, VAZQUEZ-DUHALT R. Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago [J]. JBIC Journal of Biological Inorganic Chemistry, 2011, 16(1): 63-8.
[37] KARICH A, SCHEIBNER K, ULLRICH R, et al. Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction [J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 238-46.
[38] HERNANDEZ-RUIZ J, ARNAO M B, HINER A N, et al. Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2 [J]. Biochemical Journal, 2001, 354(1): 107-14.
[39] KIM S J, JOO J C, KIM H S, et al. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack [J]. Journal of Biotechnology, 2014, 189: 78-85.
[40] VASUDEVAN P T, WEILAND R H. Deactivation of catalase by hydrogen peroxide [J]. Biotechnology and Bioengineering, 1990, 36(8): 783-9.
[41] HAGSTRöM A E, TöRNVALL U, NORDBLAD M, et al. Chemo ‐ enzymatic epoxidation – process options for improving biocatalytic productivity [J]. Biotechnology progress, 2011, 27(1): 67-76.
[42] GONZáLEZ-MARTíNEZ D, RODRíGUEZ-MATA M, MéNDEZ-SáNCHEZ D, et al. Lactonization reactions through hydrolase-catalyzed peracid formation. Use of lipases for chemoenzymatic Baeyer–Villiger oxidations of cyclobutanones [J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 114: 31-6.参考文献53
[43] CHURAKOVA E, ARENDS I W C E, HOLLMANN F. Increasing the Productivity of Peroxidase-Catalyzed Oxyfunctionalization: A Case Study on the Potential of Two -Liquid-Phase Systems [J]. ChemCatChem, 2013, 5(2): 565-8.
[44] BUREK B O, BAHNEMANN D W, BLOH J Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide [J]. ACS Catalysis, 2018, 9(1): 25-37.
[45] LOWELL A N, DEMARS M D, SLOCUM S T, et al. Chemoenzymatic Total Synthesis and Structural Diversification of Tylactone-Based Macrolide Antibiotics through LateStage Polyketide Assembly, Tailoring, and C H Functionalization [J]. Journal of the American Chemical Society, 2017, 139(23): 7913-20.
[46] GETREY L, KRIEG T, HOLLMANN F, et al. Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase [J]. Green Chemistry, 2014, 16(3): 1104-8.
[47] OZBAKIR H F, ANDERSON N T, FAN K-C, et al. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging [J]. Bioconjugate Chemistry, 2020, 31(2): 293-302.
[48] CHIA H E, MARSH E N G, BITEEN J S. Extending fluorescence microscopy into anaerobic environments [J]. Current opinion in chemical biology, 2019, 51: 98 -104.
[49] SEIFERT S, BRAKMANN S. LOV Domains in the Design of Photoresponsive Enzymes [J]. ACS Chem Biol, 2018, 13(8): 1914-20.
[50] DREPPER T, EGGERT T, CIRCOLONE F, et al. Reporter proteins for in vivo fluorescence without oxygen [J]. Nature biotechnology, 2007, 25(4): 443-5.
[51] BUCKLEY A M, PETERSEN J, ROE A J, et al. LOV-based reporters for fluorescence imaging [J]. Current Opinion in Chemical Biology, 2015, 27: 39-45.
[52] LOSI A, GARTNER W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors [J]. Annu Rev Plant Biol, 2012, 63: 49-72.
[53] SHCHERBAKOVA D M, SHEMETOV A A, KABERNIUK A A, et al. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools [J]. Annual review of biochemistry, 2015, 84: 519-50.
[54] CHAPMAN S, FAULKNER C, KAISERLI E, et al. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection [J]. Proceedings of the National Academy of Sciences, 2008, 105(50): 20038-43.
[55] RODRIGUEZ E A, CAMPBELL R E, LIN J Y, et al. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins [J]. Trends in Biochemical Sciences, 2017, 42(2): 111-29.
[56] MUKHERJEE A, WEYANT K B, AGRAWAL U, et al. Engineering and Characterization of New LOV-Based Fluorescent Proteins from Chlamydomonas reinhardtii and Vaucheria frigida [J]. ACS Synthetic Biology, 2015, 4(4): 371 -7.参考文献54
[57] ENDRES S, WINGEN M, TORRA J, et al. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria [J]. Scientific Reports, 2018, 8(1): 15021.
[58] SHU X, LEV-RAM V, DEERINCK T J, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms [J]. PLoS biology, 2011, 9(4): e1001041.
[59] PEREZ D I, GRAU M M, ARENDS I W C E, et al. Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions [J]. Chemical Communications, 2009, (44): 6848-50.
[60] COLPA D I, LONCAR N, SCHMIDT M, et al. Creating Oxidase-Peroxidase Fusion Enzymes as a Toolbox for Cascade Reactions [J]. Chembiochem, 2017, 18(22): 2226 -30.
[61] MCKEE L S, PENA M J, ROGOWSKI A, et al. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains [J]. Proc Natl Acad Sci U S A, 2012, 109(17): 6537-42.
[62] MORAIS S, MORAG E, BARAK Y, et al. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes [J]. mBio, 2012, 3(6).
[63] ELLEUCHE S. Bringing functions together with fusion enzymes--from nature's inventions to biotechnological applications [J]. Appl Microbiol Biotechnol, 2015, 99(4): 1545-56.
[64] YANG H, LIU L, XU F. The promises and challenges of fusion constructs in protein biochemistry and enzymology [J]. Appl Microbiol Biotechnol, 2016, 100(19): 8273-81.
[65] ZUCKERKANDL E, PAULING L. Evolutionary divergence and convergence in proteins [M]. Evolving genes and proteins. Elsevier. 1965: 97-166.
[66] BLOOM JESSE D, ARNOLD FRANCES H. In the light of directed evolution: Pathways of adaptive protein evolution [J]. Proceedings of the National Academy of Sciences, 2009, 106(supplement_1): 9995-10000.
[67] STEMMER W P. Rapid evolution of a protein in vitro by DNA shuffling [J]. Nature, 1994, 370(6488): 389-91.
[68] MOLINA-ESPEJA P, GARCIA-RUIZ E, GONZALEZ-PEREZ D, et al. Directed Evolution of Unspecific Peroxygenase from Agrocybe aegerita [J]. Applied and Environmental Microbiology, 2014, 80(11): 3496-507.
[69] MOLINA-ESPEJA P, MA S, MATE D M, et al. Tandem-yeast expression system forengineering and producing unspecific peroxygenase [J]. Enzyme and Microbial Technology, 2015, 73-74: 29-33.
[70] FOWLER D M, FIELDS S. Deep mutational scanning: a new style of protein science [J]. Nature Methods, 2014, 11(8): 801-7.
[71] SI T, XUE P, CHOE K, et al. High-Throughput Mass Spectrometry Complements Protein Engineering [J]. Protein Engineering, 2021: 57-79.参考文献55
[72] MUKHERJEE A, SCHROEDER C M. Flavin-based fluorescent proteins: emerging paradigms in biological imaging [J]. Current Opinion in Biotechnology, 2015, 31: 16-23.
[73] KWON Y-C, JEWETT M C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis [J]. Scientific Reports, 2015, 5(1): 8663.
[74] ZHANG X, CHEN X, HONG H, et al. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering [J]. Bioactive materials, 2022, 10: 15-31.
[75] WEI H, LI Z, HU S, et al. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide concerns both endoplasmic reticulum stress and mitochondrial death pathway through regulation of caspases, p38 and JNK [J]. Journal of Cellular Biochemistry, 2010, 111(4): 967-78.

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TQ932
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342765
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
张雅婷. CreiLOV 催化过氧化氢生成能力的表征与工程改造[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032289-张雅婷-中国科学院深圳(3823KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张雅婷]的文章
百度学术
百度学术中相似的文章
[张雅婷]的文章
必应学术
必应学术中相似的文章
[张雅婷]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。