[1] 郭雪培, 侯晓娟, 杨玉华, et al. 基于 PVDF-TrFE 薄膜的柔性自供电传感器 [J]. 仪器仪表学报, 2018, 39(7): 42-48.
[2] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review [J]. Smart Materials and Structures, 2016, 25(5): 053001.
[3] STASZEWSKI W J, MAHZAN S, TRAYNOR R. Health monitoring of aerospace composite structures–Active and passive approach [J]. Composites Science and Technology, 2009, 69(11-12): 1678-1685.
[4] PHILIBERT M, CHEN S, WONG V-K, et al. Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates [J]. Structural Health Monitoring,2021:14759217211040719.
[5] CHIU C-M, CHEN S-W, PAO Y-P, et al. A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression [J]. Science and Technology of Advanced Materials, 2019, 20(1): 964-971.
[6] CURIE J, CURIE P. Development by pressure of polar electricity in hemihedral crystals with inclined faces [J]. Bull Soc Min De France, 1880, 3:90.
[7] 赵春毛. 基于 PVDF-TrFE/ZnO 复合薄膜的柔性压电传感器的制备及性能研究 [D].中北大学, 2019.
[8] 阎瑾瑜. 压电效应及其在材料方面的应用 [J]. 数字技术与应用, 2011 (1): 100-101.
[9] RAMADAN K S, SAMEOTO D, EVOY S. A review of piezoelectric polymers as functional materials for electromechanical transducers [J]. Smart Materials and Structures, 2014, 23(3): 033001.
[10] KATZIR S. The discovery of the piezoelectric effect [M]. The Beginnings of Piezoelectricity. Springer. 2006: 15-64.
[11] SAFAEI M, SODANO H A, ANTON S R. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018) [J]. Smart Materials and Structures, 2019, 28(11): 113001.
[12] MORITA T, KUROSAWA M K, HIGUCHI T. A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L= 10 mm stator transducer) [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5): 1178-1187.
[13] HAN J, LI D, ZHAO C, et al. Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film [J]. Sensors, 2019, 19(4): 830.
[14] LANG S B, MUENSIT S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers [J]. Applied Physics A, 2006, 85(2): 125-134.
[15] TODA M, DAHL J. PVDF corrugated transducer for ultrasonic ranging sensor [J]. Sensors and Actuators A: Physical, 2007, 134(2): 427-435.
[16] GUO S, CHEN S, ZHANG L, et al. Direct-write piezoelectric ultrasonic transducers for pipe structural health monitoring [J]. NDT & E International, 2019, 107:102131.
[17] REN B, LISSENDEN C J. PVDF multielement lamb wave sensor for structural health monitoring [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2015, 63(1): 178-185.
[18] VATANSEVER D, HADIMANI R L, SHAH T, et al. An investigation of energy harvesting from renewable sources with PVDF and PZT [J]. Smart Materials and Structures, 2011, 20(5): 055019.
[19] SUKUMARAN S, CHATBOURI S, ROUXEL D, et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications [J]. Journal of Intelligent Material Systems and Structures, 2021, 32(7): 746-780.
[20] DONG W, XIAO L, HU W, et al. Wearable human–machine interface based on PVDF piezoelectric sensor [J]. Transactions of the Institute of Measurement and Control, 2017, 39(4): 398-403.
[21] WANG G, LIU T, SUN X-C, et al. Flexible pressure sensor based on PVDF nanofiber [J]. Sensors and Actuators A: Physical, 2018, 280:319-325.
[22] SKINNER D P, NEWNHAM R E, CROSS L E. Flexible composite transducers [J]. Materials Research Bulletin, 1978, 13(6): 599-607.
[23] YUN J S, PARK C K, JEONG Y H, et al. The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites [J]. Nanomaterials and Nanotechnology, 2016, 6:20.
[24] WU C G, LI P, LUO W B, et al. Synthesis, property and application of PZT/P (VDF-TrFE) composite film fabricated on polyimide substrate [J]. Materials Research Innovations, 2014, 18(sup2): S2-229.
[25] LEE M, CHEN C Y, WANG S, et al. A hybrid piezoelectric structure for wearable nanogenerators [J]. Advanced Materials, 2012, 24(13): 1759-1764.
[26] THAKUR P, KOOL A, HOQUE N A, et al. Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability [J]. Nano Energy, 2018, 44:456-467.
[27] LI J, ZHAO C, XIA K, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification [J]. Applied Surface Science, 2019, 463:626-634.
[28] LEONTSEV S O, EITEL R E. Progress in engineering high strain lead-free piezoelectric ceramics [J]. Science and Technology of Advanced Materials, 2010, 11: 4.
[29] GUO S, DUAN X, XIE M, et al. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review [J]. Micromachines, 2020, 11(12): 1076.
[30] KAWAI H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7): 975.
[31] GREGORIO R, UENO E M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF) [J]. Journal of Materials Science, 1999, 34(18): 4489-500.
[32] 吴强, 宋玉洁, 李俊. P (VDF-TrFE) 的铁电性能影响因素及研究现状 [J]. 高分子材料科学与工程, 2019, 8.
[33] FURUKAWA T. Ferroelectric properties of vinylidene fluoride copolymers [J]. Phase Transitions: A Multinational Journal, 1989, 18(3-4): 143-211.
[34] TASHIRO K, TANAKA R. Structural correlation between crystal lattice and lamellar morphology in the ferroelectric phase transition of vinylidene fluoride–trifluoroethylene copolymers as revealed by the simultaneous measurements of wide-angle and small-angle X-ray scatterings [J]. Polymer, 2006, 47(15): 5433-5444.
[35] PARK Y J, KANG S J, LOTZ B, et al. Ordered ferroelectric PVDF− TrFE thin films by high throughput epitaxy for nonvolatile polymer memory [J]. Macromolecules, 2008, 41(22): 8648-8654.
[36] DUCROT P-H, DUFOUR I, AYELA C. Optimization of PVDF-TrFE processing conditions for the fabrication of organic MEMS resonators [J]. Scientific Reports, 2016, 6(1): 1-7.
[37] CHEN B, JIA Y, TANG X, et al. Multifunctional composites for energy harvesting based on piezoelectric microgenerator[C]//2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). IEEE, 2021: 164-167.
[38] ABOLHASANI M M, SHIRVANIMOGHADDAM K, KHAYYAM H, et al. Towards predicting the piezoelectricity and physiochemical properties of the electrospun P (VDF-TrFE) nanogenrators using an artificial neural network [J]. Polymer Testing, 2018, 66:178-188.
[39] MA S, YE T, ZHANG T, et al. Highly oriented electrospun P (VDF‐TrFE) fibers via mechanical stretching for wearable motion sensing [J]. Advanced Materials Technologies, 2018, 3(7): 1800033.
[40] ICO G, SHOWALTER A, BOSZE W, et al. Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting [J]. Journal of Materials Chemistry A, 2016, 4(6): 2293-2304.
[41] JIA N, HE Q, SUN J, et al. Crystallization behavior and electroactive properties of PVDF, P (VDF-TrFE) and their blend films [J]. Polymer Testing, 2017, 57:302-306.
[42] PLOSS B, NG W-Y, CHAN H L-W, et al. Poling study of PZT/P (VDF–TrFE) composites [J]. Composites Science and Technology, 2001, 61(7): 957-962.
[43] SAHOO R, MISHRA S, UNNIKRISHNAN L, et al. Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films [J]. Materials Science in Semiconductor Processing, 2020, 117:105173.
[44] LONJON A, LAFFONT L, DEMONT P, et al. Structural and electrical properties of gold nanowires/P (VDF-TrFE) nanocomposites [J]. Journal of Physics D: Applied Physics, 2010, 43(34): 345401.
[45] TALEB S, BADILLO-ÁVILA M A, ACUAUTLA M. Fabrication of poly (vinylidene fluoride) films by ultrasonic spray coating; uniformity and piezoelectric properties [J]. Materials & Design, 2021, 212:110273.
[46] SUBBIAH T, BHAT G S, TOCK R W, et al. Electrospinning of nanofibers [J]. Journal of Applied Polymer Science, 2005, 96(2): 557-569.
[47] CHANG C, TRAN V H, WANG J, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency [J]. Nano Letters, 2010, 10(2): 726-731.
[48] 孙倩倩. P (VDF-TrFE) 压电膜声发射传感性能研究 [D].西安理工大学, 2020.
[49] OMOTE K, OHIGASHI H, KOGA K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’films of vinylidene fluoride trifluoroethylene copolymer [J]. Journal of Applied Physics, 1997, 81(6): 2760-2769.
[50] GIACOMETTI J A. Constant-current corona triode adapted and optimized for the characterization of thin dielectric films [J]. Review of Scientific Instruments, 2018, 89(5): 055109.
[51] KIM S-R, YOO J-H, CHO Y S, et al. Flexible piezoelectric energy generators based on P (VDFTrFE) nanofibers [J]. Materials Research Express, 2019, 6(8): 086311.
[52] BAE J-H, CHANG S-H. Characterization of an electroactive polymer (PVDF-TrFE) film-type sensor for health monitoring of composite structures [J]. Composite Structures, 2015, 131:1090-1098.
[53] YUAN X, GAO X, SHEN X, et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application [J]. Nano Energy, 2021, 85:105985.
[54] PI Z, ZHANG J, WEN C, et al. Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film [J]. Nano Energy, 2014, 7:33-41.
[55] LEE J H, YOON H J, KIM T Y, et al. Micropatterned P (VDF‐TrFE) film‐based piezoelectric nanogenerators for highly sensitive self‐powered pressure sensors [J]. Advanced Functional Materials, 2015, 25(21): 3203-3209.
[56] 廖佳妮, 田昕, 谭少博, 等. P (VDF-TrFE) 聚合物在声发射传感器方面的应用 [J]. Journal of Sensor Technology and Application, 2020, 8:34.
[57] SHEN Z, CHEN S, ZHANG L, et al. Direct-write piezoelectric ultrasonic transducers for non-destructive testing of metal plates [J]. IEEE Sensors Journal, 2017, 17(11): 3354-3361.
[58] SHARMA T, AROOM K, NAIK S, et al. Flexible thin-film PVDF-TrFE based pressure sensor for smart catheter applications [J]. Annals of Biomedical Engineering, 2013, 41(4): 744-751.
[59] MAIOLO L, MAITA F, CASTIELLO A, et al. Highly wearable wireless wristband for monitoring pilot cardiac activity and muscle fine movements[C]//2017 IEEE International Workshop on Metrology for Aerospace(Metroaerospace).IEEE,2017:271-275.
[60] KIBRIA F, RAHMAN W, PATRA S N. Detection of high sensitive acoustic region for sensible applications of electrospinning based PVDF-TrFE nanofiber sensor [J]. Nano Express, 2020, 1(2): 020027.
[61] GAO C, LONG Z, ZHONG T, et al. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film [J]. Journal of Physics D: Applied Physics, 2022, 55(19):194004.
[62] YAO K, TAY F E H. Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(2): 113-116.
[63] GREGORIO JR R, BOTTA M M. Effect of crystallization temperature on the phase transitions of P (VDF/TrFE) copolymers [J]. Journal of Polymer Science Part B: Polymer Physics, 1998, 36(3): 403-414.
[64] MAO D, QUEVEDO-LOPEZ M A, STIEGLER H, et al. Optimization of poly (vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics [J]. Organic Electronics, 2010, 11(5): 925-932.
[65] MAHDI R I, GAN W C, ABD MAJID W H. Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators [J]. Sensors, 2014, 14(10): 19115-19127.
[66] BANIASADI M, XU Z, CAI J, et al. Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers [J]. Polymer, 2017, 127:192-202.
[67]LI W, YU L, ZHU Y, et al. Annealing effect on poly (vinylidene fluoride/trifluoroethylene)(70/30) copolymer thin films above the melting point [J]. Journal of Applied Polymer Science, 2010, 116(2): 663-667.
[68] LEE J S, PRABU A A, KIM K J. Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P (VDF-TrFE) film for nonvolatile polymer memory device [J]. Polymer, 2010, 51(26): 6319-6333.
[69] WU Y, LI X, WENG Y, et al. Orientation of lamellar crystals and its correlation with switching behavior in ferroelectric P (VDF-TrFE) ultra-thin films [J]. Polymer, 2014, 55(3): 970-977.
[70] PARK Y J, KANG S J, PARK C, et al. Irreversible extinction of ferroelectric polarization in P (VDF-TrFE) thin films upon melting and recrystallization [J]. Applied Physics Letters, 2006, 88(24): 242908.
[71] NG C Y B, GAN W C, VELAYUTHAM T S, et al. Structural control of the dielectric, pyroelectric and ferroelectric properties of poly (vinylidene fluoride-co-trifluoroethylene) thin films [J]. Physical Chemistry Chemical Physics, 2020, 22(4): 2414-2423.
[72] BOLLER C, CHANG F-K, FUJINO Y. Encyclopedia of structural health monitoring [M]. Wiley Online Library, 2009.
[73] KARBHARI V M, ANSARI F. Structural health monitoring of civil infrastructure systems [M]. Elsevier, 2009.
[74] BROWNJOHN J M W. Structural health monitoring of civil infrastructure [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 589-622.
[75] ANTONIADOU I, DERVILIS N, PAPATHEOU E, et al. Aspects of structural health and condition monitoring of offshore wind turbines [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2035): 20140075.
[76] CIANG C C, LEE J-R, BANG H-J. Structural health monitoring for a wind turbine system: a review of damage detection methods [J]. Measurement Science and Technology, 2008, 19(12): 122001.
[77] WORLTON D C. Experimental confirmation of Lamb waves at megacycle frequencies [J]. Journal of Applied Physics, 1961, 32(6): 967-971.
[78] MIAO H, LI F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review [J]. Ultrasonics, 2021, 114:106355.
[79] ALLEYNE D N, CAWLEY P. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers [J]. Journal of Nondestructive Evaluation, 1996, 15(1): 11-20.
[80] ALLEYNE D N, CAWLEY P. Optimization of Lamb wave inspection techniques [J]. Ndt & E International, 1992, 25(1): 11-22.
[81] YU L, TIAN Z. Lamb wave structural health monitoring using a hybrid PZT-laser vibrometer approach [J]. Structural Health Monitoring, 2013, 12(5-6): 469-483.
[82] MUSTAPHA S, YE L, WANG D, et al. Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency [J]. Composite Structures, 2011, 93(2): 483-491.
[83] CHO Y, HONGERHOLT D D, ROSE J L. Lamb wave scattering analysis for reflector characterization [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44(1): 44-52.
[84] HA S, CHANG F-K. Adhesive interface layer effects in PZT-induced Lamb wave propagation [J]. Smart Materials and Structures, 2010, 19(2): 025006.
[85] 钱磊. 用于 SHM 中的全方位柔性介电弹性体叉指换能器结构优化设计研究 [D]. 江苏大学, 2020.
[86] KODURU J P, ROSE J L. Transducer arrays for omnidirectional guided wave mode control in plate like structures [J]. Smart Materials and Structures, 2012, 22(1): 015010.
[87] SU Z, YE L. Identification of damage using Lamb waves: from fundamentals to applications [M]. Springer Science & Business Media, 2009.
[88] SCHMIDT D, SINAPIUS M, WIERACH P. Design of mode selective actuators for Lamb wave excitation in composite plates [J]. CEAS Aeronautical Journal, 2013, 4(1): 105-112.
[89] WEN F, ZHANG Z, HE T, et al. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove [J]. Nature Communications, 2021, 12(1): 1-13.
[90] ZHOU Z, CHEN K, LI X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays [J]. Nature Electronics, 2020, 3(9): 571-578.
[91] O’CONNOR T F, FACH M E, MILLER R, et al. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics [J]. PloS One, 2017, 12(7): e0179766.
[92] LEE B G, LEE S M. Smart wearable hand device for sign language interpretation system with sensors fusion [J]. IEEE Sensors Journal, 2017, 18(3): 1224-1232.
[93] PRADHAN G, PRABHAKARAN B, LI C. Hand-gesture computing for the hearing and speech impaired [J]. IEEE MultiMedia, 2008, 15(02): 20-27.
[94] ZHAO J, HAN S, YANG Y, et al. Passive and space-discriminative ionic sensors based on durable nanocomposite electrodes toward sign language recognition [J]. ACS Nano, 2017, 11(9): 8590-8599.
[95] ABHISHEK K S, QUBELEY L C F, HO D. Glove-based hand gesture recognition sign language translator using capacitive touch sensor[C]//2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2016: 334-337.
[96] RIVERA-ACOSTA M, ORTEGA-CISNEROS S, RIVERA J, et al. American sign language alphabet recognition using a neuromorphic sensor and an artificial neural network [J]. Sensors, 2017, 17(10): 2176.
修改评论