中文版 | English
题名

基于压电聚合物PVDF-TrFE的柔性传感器制备及应用

其他题名
FABRICATION AND APPLICATION OF FLEXIBLE SENSOR BASED ON PIEZOELECTRIC POLYMER PVDF-TrFE
姓名
姓名拼音
Wu Hefeng
学号
12032292
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
郭师峰
导师单位
深圳先进技术研究院
论文答辩日期
2022-05-11
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  随着 5G和人工智能时代的到来,智能传感器行业迅速崛起,未来市场前景广阔。其中,压电传感器在可穿戴设备、人机交互以及结构健康监测领域的需求与应用大幅增加,而传统的刚性压电传感器存在体积大、质量重、耦合性差等缺点,迫切需要开发体积小、重量轻、耦合性好、灵敏度高、易加工的柔性压电传感器。
本论文在国自然联合基金重点项目和深圳市智慧传感与系统检测重点实验室资助项目的支持下,以柔性压电聚合物PVDF-TrFE作为研究对象,对其制备工艺压电性能展开研究,并针对其在结构健康监测以及手势识别领域的应用进行探索。首先是分析退火和极化等工艺对喷涂制备PVDF-TrFE薄膜的结晶行为和压电性能的影响,优化功能化参数,制备出高性能的柔性PVDF-TrFE压电薄膜;进一 步设计并制备基于压电聚合物PVDF-TrFE的柔性传感器,探索其在结构健康监测 以及手势识别领域的应用。主要结论如下:
1)研究了退火、极化参数对压电性能的影响。在居里温度Tc和熔融温度
Tm之间进行退火处理,可以显著提高PVDF-TrFE薄膜的结晶度,且温度越高,退火所需时间越短;在 40 kV的电压下对退火后的PVDF-TrFE薄膜进行电晕极化 5个循环,能获得最佳的压电性能,其压电应变常数值为 19.5±0.6 pm/V
2)探索了PVDF-TrFE压电传感器在结构健康监测领域的应用。在 300kHz 的激发频率下,制备的PVDF-TrFE超声换能器能同时产生A0 模态和S0 模态的导波,且A0模态在缺陷识别上更占优势;在窄板结构上,A0模态导波在经过缺陷后会出现明显的信号衰减(从 41 mV下降到 21 mV);在板材结构上,通过传感网络同样能有效检测到经过缺陷后A0 模态信号幅值的变化。
(3)探索了PVDF-TrFE压电传感器在手势识别领域的应用。对于制备的PVDF-TrFE柔性压电传感器,在 30 N的荷重下能产生约 52 mV的输出电压,且具有很好的稳定性;在弯曲实验中,传感器的弯曲角度越大,其输出电压值越高,呈正相关的关系,且在弯曲角度为 90°时,输出电压约为 45 mV;制备的传感器 表现出高灵敏度,对于简单的手势进行了有效的区分与识别,体现了PVDF-TrFE 压电传感器在手势识别领域的巨大应用潜力。
  本论文制备的高性能PVDF-TrFE压电聚合物薄膜,实现了对工程结构缺陷以 及手势动作的识别,在结构健康监测和人机交互领域上具有很大的应用潜力。
其他摘要
  With the advent of the era of 5G and artificial intelligence, the smart sensor industry has risen rapidly with broad prospects. Among them, the applications and demand of piezoelectric sensors in the fields of wearable devices, human-computer interaction and structural health monitoring have increased significantly. The conventional rigid
piezoelectric sensors have shortcomings in large size, heavy weight, and poor coupling, therefore, there is an urgent requirement to develop flexible piezoelectric sensors with small size, light weight, good coupling, high sensitivity and easy processing.
  Supported by the National Natural Science Foundation of China (Grant No. U2133213) and the Science and Technology Innovation Commission of Shenzhen (Grant No. ZDSYS20190902093209795), this thesis focus on developing high flexible piezoelectric transducer and its applications. The preparation process and piezoelectric
properties of PVDF-TrFE were detailedly studied, and its application in structural health monitoring and gesture recognition was explored. The effects of annealing and polarization processes on the crystallization behavior and piezoelectric properties of PVDF-TrFE films prepared by spraying were optimized to fabricate high-performance flexible PVDF-TrFE piezoelectric films. The flexible sensor based on piezoelectric
polymer PVDF-TrFE was further designed and fabricated, and its applications in the structural health monitoring and gesture recognition were explored. The main conclusions are summarized below:
(1) The effects of annealing and polarization parameters on the piezoelectric properties were studied. Annealing between the Curie temperature Tc and the melting temperature Tm can significantly improve the crystallinity of PVDF-TrFE films, and the higher the temperature, the shorter the annealing time. The film after annealing was subjected to corona polarization at a voltage of 40 kV for 5 cycles to obtain the best piezoelectric property with the piezoelectric strain constant value of 19.5±0.6 pm/V.
(2) The application of PVDF-TrFE piezoelectric sensors in the structural health monitoring was explored. At the excitation frequency of 300 kHz, the prepared PVDF-TrFE-based ultrasonic transducer can generate guided waves of A0 mode and S0 mode, and the A0 mode is more dominant and selected in defect identification. On the narrow
strip, the amplitude of A0 mode wave decreased significantly after passing through the defect, reducing from 41 mV to 21 mV. On the plate structure, the change of the amplitude of A0 mode signal after passing through the defect can also be successfully detected through the sensor network.
(3) The application of PVDF-TrFE piezoelectric sensors in gesture recognition was also explored. The prepared PVDF-TrFE-based flexible piezoelectric sensor can generatean output voltage of about 52 mV under a load of 30 N, and has good stability. During the bending motion, the greater the bending angle of the sensor, the higher the output voltage, as the positive correlation. When the bending angle is 90°, the output voltage is about 45 mV. The prepared sensors can effectively distinguish and recognize simple gestures, which exhibit high sensitivity and great application potential in the field of
gesture recognition.  The high-performance PVDF-TrFE piezoelectric polymer sensors prepared in this thesis realize the recognition of engineering structural defects and gestures, and have great application potential in the fields of structural health monitoring and human-omputer interaction.
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] 郭雪培, 侯晓娟, 杨玉华, et al. 基于 PVDF-TrFE 薄膜的柔性自供电传感器 [J]. 仪器仪表学报, 2018, 39(7): 42-48.
[2] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review [J]. Smart Materials and Structures, 2016, 25(5): 053001.
[3] STASZEWSKI W J, MAHZAN S, TRAYNOR R. Health monitoring of aerospace composite structures–Active and passive approach [J]. Composites Science and Technology, 2009, 69(11-12): 1678-1685.
[4] PHILIBERT M, CHEN S, WONG V-K, et al. Direct-write piezoelectric coating transducers in combination with discrete ceramic transducer and laser pulse excitation for ultrasonic impact damage detection on composite plates [J]. Structural Health Monitoring,2021:14759217211040719.
[5] CHIU C-M, CHEN S-W, PAO Y-P, et al. A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression [J]. Science and Technology of Advanced Materials, 2019, 20(1): 964-971.
[6] CURIE J, CURIE P. Development by pressure of polar electricity in hemihedral crystals with inclined faces [J]. Bull Soc Min De France, 1880, 3:90.
[7] 赵春毛. 基于 PVDF-TrFE/ZnO 复合薄膜的柔性压电传感器的制备及性能研究 [D].中北大学, 2019.
[8] 阎瑾瑜. 压电效应及其在材料方面的应用 [J]. 数字技术与应用, 2011 (1): 100-101.
[9] RAMADAN K S, SAMEOTO D, EVOY S. A review of piezoelectric polymers as functional materials for electromechanical transducers [J]. Smart Materials and Structures, 2014, 23(3): 033001.
[10] KATZIR S. The discovery of the piezoelectric effect [M]. The Beginnings of Piezoelectricity. Springer. 2006: 15-64.
[11] SAFAEI M, SODANO H A, ANTON S R. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018) [J]. Smart Materials and Structures, 2019, 28(11): 113001.
[12] MORITA T, KUROSAWA M K, HIGUCHI T. A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (/spl phi/2.4 mm, L= 10 mm stator transducer) [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5): 1178-1187.
[13] HAN J, LI D, ZHAO C, et al. Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film [J]. Sensors, 2019, 19(4): 830.
[14] LANG S B, MUENSIT S. Review of some lesser-known applications of piezoelectric and pyroelectric polymers [J]. Applied Physics A, 2006, 85(2): 125-134.
[15] TODA M, DAHL J. PVDF corrugated transducer for ultrasonic ranging sensor [J]. Sensors and Actuators A: Physical, 2007, 134(2): 427-435.
[16] GUO S, CHEN S, ZHANG L, et al. Direct-write piezoelectric ultrasonic transducers for pipe structural health monitoring [J]. NDT & E International, 2019, 107:102131.
[17] REN B, LISSENDEN C J. PVDF multielement lamb wave sensor for structural health monitoring [J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2015, 63(1): 178-185.
[18] VATANSEVER D, HADIMANI R L, SHAH T, et al. An investigation of energy harvesting from renewable sources with PVDF and PZT [J]. Smart Materials and Structures, 2011, 20(5): 055019.
[19] SUKUMARAN S, CHATBOURI S, ROUXEL D, et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications [J]. Journal of Intelligent Material Systems and Structures, 2021, 32(7): 746-780.
[20] DONG W, XIAO L, HU W, et al. Wearable human–machine interface based on PVDF piezoelectric sensor [J]. Transactions of the Institute of Measurement and Control, 2017, 39(4): 398-403.
[21] WANG G, LIU T, SUN X-C, et al. Flexible pressure sensor based on PVDF nanofiber [J]. Sensors and Actuators A: Physical, 2018, 280:319-325.
[22] SKINNER D P, NEWNHAM R E, CROSS L E. Flexible composite transducers [J]. Materials Research Bulletin, 1978, 13(6): 599-607.
[23] YUN J S, PARK C K, JEONG Y H, et al. The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites [J]. Nanomaterials and Nanotechnology, 2016, 6:20.
[24] WU C G, LI P, LUO W B, et al. Synthesis, property and application of PZT/P (VDF-TrFE) composite film fabricated on polyimide substrate [J]. Materials Research Innovations, 2014, 18(sup2): S2-229.
[25] LEE M, CHEN C Y, WANG S, et al. A hybrid piezoelectric structure for wearable nanogenerators [J]. Advanced Materials, 2012, 24(13): 1759-1764.
[26] THAKUR P, KOOL A, HOQUE N A, et al. Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability [J]. Nano Energy, 2018, 44:456-467.
[27] LI J, ZHAO C, XIA K, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification [J]. Applied Surface Science, 2019, 463:626-634.
[28] LEONTSEV S O, EITEL R E. Progress in engineering high strain lead-free piezoelectric ceramics [J]. Science and Technology of Advanced Materials, 2010, 11: 4.
[29] GUO S, DUAN X, XIE M, et al. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review [J]. Micromachines, 2020, 11(12): 1076.
[30] KAWAI H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7): 975.
[31] GREGORIO R, UENO E M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF) [J]. Journal of Materials Science, 1999, 34(18): 4489-500.
[32] 吴强, 宋玉洁, 李俊. P (VDF-TrFE) 的铁电性能影响因素及研究现状 [J]. 高分子材料科学与工程, 2019, 8.
[33] FURUKAWA T. Ferroelectric properties of vinylidene fluoride copolymers [J]. Phase Transitions: A Multinational Journal, 1989, 18(3-4): 143-211.
[34] TASHIRO K, TANAKA R. Structural correlation between crystal lattice and lamellar morphology in the ferroelectric phase transition of vinylidene fluoride–trifluoroethylene copolymers as revealed by the simultaneous measurements of wide-angle and small-angle X-ray scatterings [J]. Polymer, 2006, 47(15): 5433-5444.
[35] PARK Y J, KANG S J, LOTZ B, et al. Ordered ferroelectric PVDF− TrFE thin films by high throughput epitaxy for nonvolatile polymer memory [J]. Macromolecules, 2008, 41(22): 8648-8654.
[36] DUCROT P-H, DUFOUR I, AYELA C. Optimization of PVDF-TrFE processing conditions for the fabrication of organic MEMS resonators [J]. Scientific Reports, 2016, 6(1): 1-7.
[37] CHEN B, JIA Y, TANG X, et al. Multifunctional composites for energy harvesting based on piezoelectric microgenerator[C]//2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). IEEE, 2021: 164-167.
[38] ABOLHASANI M M, SHIRVANIMOGHADDAM K, KHAYYAM H, et al. Towards predicting the piezoelectricity and physiochemical properties of the electrospun P (VDF-TrFE) nanogenrators using an artificial neural network [J]. Polymer Testing, 2018, 66:178-188.
[39] MA S, YE T, ZHANG T, et al. Highly oriented electrospun P (VDF‐TrFE) fibers via mechanical stretching for wearable motion sensing [J]. Advanced Materials Technologies, 2018, 3(7): 1800033.
[40] ICO G, SHOWALTER A, BOSZE W, et al. Size-dependent piezoelectric and mechanical properties of electrospun P (VDF-TrFE) nanofibers for enhanced energy harvesting [J]. Journal of Materials Chemistry A, 2016, 4(6): 2293-2304.
[41] JIA N, HE Q, SUN J, et al. Crystallization behavior and electroactive properties of PVDF, P (VDF-TrFE) and their blend films [J]. Polymer Testing, 2017, 57:302-306.
[42] PLOSS B, NG W-Y, CHAN H L-W, et al. Poling study of PZT/P (VDF–TrFE) composites [J]. Composites Science and Technology, 2001, 61(7): 957-962.
[43] SAHOO R, MISHRA S, UNNIKRISHNAN L, et al. Enhanced dielectric and piezoelectric properties of Fe-doped ZnO/PVDF-TrFE composite films [J]. Materials Science in Semiconductor Processing, 2020, 117:105173.
[44] LONJON A, LAFFONT L, DEMONT P, et al. Structural and electrical properties of gold nanowires/P (VDF-TrFE) nanocomposites [J]. Journal of Physics D: Applied Physics, 2010, 43(34): 345401.
[45] TALEB S, BADILLO-ÁVILA M A, ACUAUTLA M. Fabrication of poly (vinylidene fluoride) films by ultrasonic spray coating; uniformity and piezoelectric properties [J]. Materials & Design, 2021, 212:110273.
[46] SUBBIAH T, BHAT G S, TOCK R W, et al. Electrospinning of nanofibers [J]. Journal of Applied Polymer Science, 2005, 96(2): 557-569.
[47] CHANG C, TRAN V H, WANG J, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency [J]. Nano Letters, 2010, 10(2): 726-731.
[48] 孙倩倩. P (VDF-TrFE) 压电膜声发射传感性能研究 [D].西安理工大学, 2020.
[49] OMOTE K, OHIGASHI H, KOGA K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’films of vinylidene fluoride trifluoroethylene copolymer [J]. Journal of Applied Physics, 1997, 81(6): 2760-2769.
[50] GIACOMETTI J A. Constant-current corona triode adapted and optimized for the characterization of thin dielectric films [J]. Review of Scientific Instruments, 2018, 89(5): 055109.
[51] KIM S-R, YOO J-H, CHO Y S, et al. Flexible piezoelectric energy generators based on P (VDF￾TrFE) nanofibers [J]. Materials Research Express, 2019, 6(8): 086311.
[52] BAE J-H, CHANG S-H. Characterization of an electroactive polymer (PVDF-TrFE) film-type sensor for health monitoring of composite structures [J]. Composite Structures, 2015, 131:1090-1098.
[53] YUAN X, GAO X, SHEN X, et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application [J]. Nano Energy, 2021, 85:105985.
[54] PI Z, ZHANG J, WEN C, et al. Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film [J]. Nano Energy, 2014, 7:33-41.
[55] LEE J H, YOON H J, KIM T Y, et al. Micropatterned P (VDF‐TrFE) film‐based piezoelectric nanogenerators for highly sensitive self‐powered pressure sensors [J]. Advanced Functional Materials, 2015, 25(21): 3203-3209.
[56] 廖佳妮, 田昕, 谭少博, 等. P (VDF-TrFE) 聚合物在声发射传感器方面的应用 [J]. Journal of Sensor Technology and Application, 2020, 8:34.
[57] SHEN Z, CHEN S, ZHANG L, et al. Direct-write piezoelectric ultrasonic transducers for non-destructive testing of metal plates [J]. IEEE Sensors Journal, 2017, 17(11): 3354-3361.
[58] SHARMA T, AROOM K, NAIK S, et al. Flexible thin-film PVDF-TrFE based pressure sensor for smart catheter applications [J]. Annals of Biomedical Engineering, 2013, 41(4): 744-751.
[59] MAIOLO L, MAITA F, CASTIELLO A, et al. Highly wearable wireless wristband for monitoring pilot cardiac activity and muscle fine movements[C]//2017 IEEE International Workshop on Metrology for Aerospace(Metroaerospace).IEEE,2017:271-275.
[60] KIBRIA F, RAHMAN W, PATRA S N. Detection of high sensitive acoustic region for sensible applications of electrospinning based PVDF-TrFE nanofiber sensor [J]. Nano Express, 2020, 1(2): 020027.
[61] GAO C, LONG Z, ZHONG T, et al. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film [J]. Journal of Physics D: Applied Physics, 2022, 55(19):194004.
[62] YAO K, TAY F E H. Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(2): 113-116.
[63] GREGORIO JR R, BOTTA M M. Effect of crystallization temperature on the phase transitions of P (VDF/TrFE) copolymers [J]. Journal of Polymer Science Part B: Polymer Physics, 1998, 36(3): 403-414.
[64] MAO D, QUEVEDO-LOPEZ M A, STIEGLER H, et al. Optimization of poly (vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics [J]. Organic Electronics, 2010, 11(5): 925-932.
[65] MAHDI R I, GAN W C, ABD MAJID W H. Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators [J]. Sensors, 2014, 14(10): 19115-19127.
[66] BANIASADI M, XU Z, CAI J, et al. Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers [J]. Polymer, 2017, 127:192-202.
[67]LI W, YU L, ZHU Y, et al. Annealing effect on poly (vinylidene fluoride/trifluoroethylene)(70/30) copolymer thin films above the melting point [J]. Journal of Applied Polymer Science, 2010, 116(2): 663-667.
[68] LEE J S, PRABU A A, KIM K J. Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P (VDF-TrFE) film for nonvolatile polymer memory device [J]. Polymer, 2010, 51(26): 6319-6333.
[69] WU Y, LI X, WENG Y, et al. Orientation of lamellar crystals and its correlation with switching behavior in ferroelectric P (VDF-TrFE) ultra-thin films [J]. Polymer, 2014, 55(3): 970-977.
[70] PARK Y J, KANG S J, PARK C, et al. Irreversible extinction of ferroelectric polarization in P (VDF-TrFE) thin films upon melting and recrystallization [J]. Applied Physics Letters, 2006, 88(24): 242908.
[71] NG C Y B, GAN W C, VELAYUTHAM T S, et al. Structural control of the dielectric, pyroelectric and ferroelectric properties of poly (vinylidene fluoride-co-trifluoroethylene) thin films [J]. Physical Chemistry Chemical Physics, 2020, 22(4): 2414-2423.
[72] BOLLER C, CHANG F-K, FUJINO Y. Encyclopedia of structural health monitoring [M]. Wiley Online Library, 2009.
[73] KARBHARI V M, ANSARI F. Structural health monitoring of civil infrastructure systems [M]. Elsevier, 2009.
[74] BROWNJOHN J M W. Structural health monitoring of civil infrastructure [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 589-622.
[75] ANTONIADOU I, DERVILIS N, PAPATHEOU E, et al. Aspects of structural health and condition monitoring of offshore wind turbines [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2035): 20140075.
[76] CIANG C C, LEE J-R, BANG H-J. Structural health monitoring for a wind turbine system: a review of damage detection methods [J]. Measurement Science and Technology, 2008, 19(12): 122001.
[77] WORLTON D C. Experimental confirmation of Lamb waves at megacycle frequencies [J]. Journal of Applied Physics, 1961, 32(6): 967-971.
[78] MIAO H, LI F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review [J]. Ultrasonics, 2021, 114:106355.
[79] ALLEYNE D N, CAWLEY P. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers [J]. Journal of Nondestructive Evaluation, 1996, 15(1): 11-20.
[80] ALLEYNE D N, CAWLEY P. Optimization of Lamb wave inspection techniques [J]. Ndt & E International, 1992, 25(1): 11-22.
[81] YU L, TIAN Z. Lamb wave structural health monitoring using a hybrid PZT-laser vibrometer approach [J]. Structural Health Monitoring, 2013, 12(5-6): 469-483.
[82] MUSTAPHA S, YE L, WANG D, et al. Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency [J]. Composite Structures, 2011, 93(2): 483-491.
[83] CHO Y, HONGERHOLT D D, ROSE J L. Lamb wave scattering analysis for reflector characterization [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44(1): 44-52.
[84] HA S, CHANG F-K. Adhesive interface layer effects in PZT-induced Lamb wave propagation [J]. Smart Materials and Structures, 2010, 19(2): 025006.
[85] 钱磊. 用于 SHM 中的全方位柔性介电弹性体叉指换能器结构优化设计研究 [D]. 江苏大学, 2020.
[86] KODURU J P, ROSE J L. Transducer arrays for omnidirectional guided wave mode control in plate like structures [J]. Smart Materials and Structures, 2012, 22(1): 015010.
[87] SU Z, YE L. Identification of damage using Lamb waves: from fundamentals to applications [M]. Springer Science & Business Media, 2009.
[88] SCHMIDT D, SINAPIUS M, WIERACH P. Design of mode selective actuators for Lamb wave excitation in composite plates [J]. CEAS Aeronautical Journal, 2013, 4(1): 105-112.
[89] WEN F, ZHANG Z, HE T, et al. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove [J]. Nature Communications, 2021, 12(1): 1-13.
[90] ZHOU Z, CHEN K, LI X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays [J]. Nature Electronics, 2020, 3(9): 571-578.
[91] O’CONNOR T F, FACH M E, MILLER R, et al. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics [J]. PloS One, 2017, 12(7): e0179766.
[92] LEE B G, LEE S M. Smart wearable hand device for sign language interpretation system with sensors fusion [J]. IEEE Sensors Journal, 2017, 18(3): 1224-1232.
[93] PRADHAN G, PRABHAKARAN B, LI C. Hand-gesture computing for the hearing and speech impaired [J]. IEEE MultiMedia, 2008, 15(02): 20-27.
[94] ZHAO J, HAN S, YANG Y, et al. Passive and space-discriminative ionic sensors based on durable nanocomposite electrodes toward sign language recognition [J]. ACS Nano, 2017, 11(9): 8590-8599.
[95] ABHISHEK K S, QUBELEY L C F, HO D. Glove-based hand gesture recognition sign language translator using capacitive touch sensor[C]//2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2016: 334-337.
[96] RIVERA-ACOSTA M, ORTEGA-CISNEROS S, RIVERA J, et al. American sign language alphabet recognition using a neuromorphic sensor and an artificial neural network [J]. Sensors, 2017, 17(10): 2176.

所在学位评定分委会
中国科学院深圳理工大学(筹)联合培养
国内图书分类号
TQ 317.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342766
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
吴和丰. 基于压电聚合物PVDF-TrFE的柔性传感器制备及应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032292-吴和丰-中国科学院深圳(5699KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[吴和丰]的文章
百度学术
百度学术中相似的文章
[吴和丰]的文章
必应学术
必应学术中相似的文章
[吴和丰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。