中文版 | English
题名

KANK 家族蛋白在黏着斑动态调控中的作用机制研究

其他题名
MOLECULAR MECHANISM OF KANK FAMILY PROTEINS IN THE DYNAMIC REGULATION OF FOCAL ADHESION
姓名
姓名拼音
ZHANG Jing
学号
11930160
学位类型
硕士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
导师
魏志毅
导师单位
生物系
论文答辩日期
2022-04-29
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

黏着斑(FA)是由整合素介导的连接胞外基质和细胞骨架的多蛋白组合结构。在黏着斑中,Talin、Vinculin、黏着斑激酶等蛋白参与了它从组装到拆卸的动态调控。这些蛋白可以通过其结构或相互作用网络的变化实现黏着斑中机械力和信号转导,从而局部改变细胞对细胞外基质的粘附性,促使细胞发生迁移。肿瘤转移的重要因素之一就是细胞的黏附能力的变化,因此研究黏着斑的结构组成以及黏着斑中信号传导和细胞内牵引力改变的基本机制,对了解黏着斑在细胞迁移及肿瘤进展中所扮演的角色至关重要。已有研究表明,黏着斑能连接至肌动蛋白和微管细胞骨架,但细胞骨架如何对黏着斑进行动态调控尚不明确。近年来,研究发现KANK家族蛋白是黏着斑中介导其与微丝和微管连接的一个重要组成部分。哺乳动物中的KANK 家族蛋白共有4 种同源蛋白(KANK1-KANK4),这些同源蛋白都包含了几个重要结构域:N 端的KN 结构域,卷曲螺旋结构域和C 端的锚蛋白重复序列。我的课题着重研究了KANK 蛋白的KN 结构域和卷曲螺旋结构域如何通过介导不同的蛋白质相互作用来调控黏着斑的功能。之前的研究表明,KN 结构域能与Talin 相互作用,而卷曲螺旋结构域能和Liprin-β1 结合。为了揭示这些相互作用的结构基础,我们确定了KANK1 同Talin 和Liprin-β1 结合的区域,分别纯化了KANK1_KN / Talin_R7 和KANK1_CC1 / Liprin-β1_H1 复合物,并解析了它们的晶体结构。基于我们的结构分析和随后的生化实验,我们发现KANK1 可以通过与Vinculin 竞争Talin 上的结合位点来调节粘着斑和肌动蛋白细胞骨架之间的连接。另一方面,我们发现KANK1 与Liprin-β1 之间的相互作用采用2:2 结合模式,极大地加强了两者之间结合的亲和力,从而进一步解释了KANK1 如何将微管捕获到粘着斑附近来介导粘着斑的解聚。为了深入了解KANK 蛋白所介导的不同的蛋白质相互作用之间的联系,我还尝试纯化了KANK1 和KANK2 的全长蛋白。综上,本研究以KANK 蛋白为切入点,揭示了KANK 蛋白所介导的不同的蛋白质相互作用之间的结构基础,为黏着斑的组装和拆卸的具体过程提供了一些新思路,有利于进一步理解细胞迁移及肿瘤进展中黏着斑的动态调控机理。

其他摘要

Focal adhesion (FA) is the integrin-mediated protein assembly that link the extra cellular matrix (ECM) and intracellular cytoskeleton. FA proteins, such as talin, vinculin, and focal adhesion kinase, play important roles in the dynamic regulation of focal adhesion assembly and disassembly. FA proteins mediate mechanical force and signal transduction in FAs, thereby locally altering the FA-ECM linkage and promoting cell migration. Malfunction of FA regulation is one of the important factors of tumor metastasis. Thus, the study of signaling and intracellular traction mechanism in focal adhesions is crucial for understanding the role of focal adhesions in cell migration and tumor progression. It has been shown that FAs connect to the actin and microtubule cytoskeleton, but little is known about how cytoskeleton dynamically regulates FAs. In recent years, KANK proteins have been identified as important components of FAs and are required for the attachment of focal adhesions to actin and microtubules. The KANK family in mammals contain four homologs (KANK1-KANK4), which share several important domains: the N-terminal KN domain, the coiled-coil domain and the C-terminal ankyrin repeat domain. My study focuses on decoding how the KN and coiled-coil domains regulate the function of focal adhesions. As the KN and coiled-coil domain can interact with talin and liprin-β1, respectively, to uncover the structural basis of these interactions, we mapped the regions in KANK1 binding to talin and liprin-β1, purified the KANK1_KN / Talin_R7 and KANK1_CC1 / Liprin-β1_H1 complexes, and solved their crystal structures, respectively. Based on our structural analysis and following biochemical studies, we found that KANK1 can regulate the connection between focal adhesions and the actin cytoskeleton by competing with vinculin for binding sites on talin. On the other hand, we found that the interaction between KANK1 and liprin-β1 adopts a 2:2 binding mode, which greatly strengthens the binding affinity between the two, thereby further explaining how KANK1 capture microtubules near focal adhesions to mediate the depolymerization of focal adhesions. In order to further understand the different protein interactions mediated by KANK proteins, I have also tried to purify the full-length proteins of KANK1 and KANK2. In conclusion, this study took KANK protein as the entry point to reveal the structural basis of different protein interactions mediated by KANK proteins, and provided some new ideas for the specific process of focal adhesion assembly and disassembly. This is conducive to further understanding the dynamic regulation mechanism of focal adhesions in cell migration and tumor progression.

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] ARNAOUT M A, GOODMAN S L, XIONG J P . Structure and mechanics of integrin-based cell adhesion[J]. Current Opinion in Cell Biology, 2007, 19(5):495-507.
[2] WEHRLE-HALLER B. Assembly and disassembly of cell matrix adhesions.[J]. Current Opinion in Cell Biology, 2012, 24(5).
[3] STEHBENS S, WITTMANN T. Targeting and transport: how microtubules control focal adhesion dynamics[J]. Journal of Cell Biology, 2012, 198(4): 481-489.
[4] BACHIR A I, ZARENO J, MOISSOGLU K, et al. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions[J]. Current Biology, 2014, 24(16): 1845-1853.
[5] EZRATTY E J, BERTAUX C, MARCANTONIO E E, et al. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells[J]. The Journal of Cell Biology, 2009, 187(5):733-747.
[6] GEIGER B, YAMADA K M. Molecular Architecture and Function of Matrix Adhesions[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(5):53-69.
[7] SUN Z, TSENG H Y, TAN S, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesionformation[J]. Nature Cell Biology, 2016, 18(9):941.
[8] BOUCHET B P, GOUGH R E, AMMON Y C, et al.Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions[J]. Elife, 2016, 5.
[9] ROSSIER O, OCTEAU V, SIBARITA J B, et al. Integrins β 1 and β 3 exhibit distinct dynamic nanoscale organizations inside focal adhesions[J]. Nature Cell Biology, 2012, 14(10):1057-1067.
[10] BACHIR A I, ZARENO J, MOISSOGLU K, et al. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions.[J]. Current Biology, 2014, 24(16):1845-1853.
[11] ZHU Y, KAKINUMA N, WANG Y, et al. Kank proteins: A new family of ankyrin-repeat domain-containing proteins[J]. BBA - General Subjects, 2008, 1780(2):128-133.
[12] CHEN N P , SUN Z , REINHARD F. The Kank family proteins in adhesion dynamics[J]. Current opinion in cell biology, 2018, 54:130-136.
[13] HENSLEY M R, CUI Z, CHUA R, et al. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development[J]. Scientific Reports, 2016, 6(1):27816.
[14] SARKAR S, ROY B C, HATANO N, et al. A Novel Ankyrin Repeat-containing Gene (Kank) Located at 9p24 Is a Growth Suppressor of Renal Cell Carcinoma[J]. Journal of Biological Chemistry, 2002, 277(39):36585.
[15] GEE H Y, ZHANG F, ASHRAF S, et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome.[J]. Journal of Clinical Investigation, 2015, 125(6):2375.
[16] LERER I, SAGI M, MEINER V, et al. Deletion of the ANKRD15 gene at 9p24. 3 causes parent-of-origin-dependent inheritance of familial cerebral palsy[J]. Human molecular genetics, 2005, 14(24): 3911-3920.
[17] WEAVERS H, PRIETO-SANCHEZ S, GRAWE F, et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm[J]. Nature.
[18] DING M, GONCHAROV A, JIN Y, et al. C. elegans ankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis[J]. Development, 2003, 130(23):5791-801.
[19] IHARA S, HAGEDORN E J, MORRISSEY M A, et al. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans.[J]. Nature Cell Biology, 2011, 13(6):641-651.
[20] YONG Y, SUK L W, XIA T, et al. Extracellular Matrix Regulates UNC-6 (Netrin) Axon Guidance by Controlling the Direction of Intracellular UNC-40 (DCC) Outgrowth Activity[J]. Plos One, 2014, 9(5):e97258.
[21] KAKINUMA N, ZHU Y, WANG Y, et al. Kank proteins: structure, functions and diseases[J]. Cellular and Molecular Life Sciences, 2009, 66(16):2651-2659.
[22] LUO M, MENGOS A E, MANDARINO L J, et al. Association of liprin β‐1 with kank proteins in melanoma[J]. Experimental Dermatology, 2016, 25(4).
[23] VAN DER VAART B, VAN RIEL W E, DOODHI H, et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor[J]. Developmental cell, 2013, 27(2): 145-160.
[24] KAKINUMA N, KIYAMA R. A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane[J]. Biochemical & Biophysical Research Communications, 2009, 386(4):639-644.
[25] STEHBENS S J, PASZEK M, PEMBLE H, et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover[J]. Nature Cell Biology, 2014, 16(6):561-573.
[26] LANSBERGEN G, GRIGORIEV I, MIMORI-KIYOSUE Y, et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta.[J]. Developmental Cell, 2006, 11(1):21-32.
[27] WU X, SHEN QT, ORISTIAN D S, et al. Skin Stem Cells Orchestrate Directional Migration by Regulating Microtubule-ACF7 Connections through GSK3β[J]. Cell, 2011, 144(3):341-352.
[28] YUE J, ZHANG Y, LIANG WG, et al. In vivo epidermal migration requires focal adhesion targeting of ACF7[J]. Nature communications, 2016, 7(1): 1-15.
[29] WU X, KODAMA A, FUCHS E. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity.[J]. Cell, 2008, 135(1):137-148.
[30] ASTRO V, CHIARETTI S, MAGISTRATI E, et al. Liprin-α1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration[J]. Journal of Cell Science, 2014, 127(17):3862.
[31] BIRKENFELD J, NALBANT P, YOON S H, et al. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis?[J]. Trends in Cell Biology, 2008, 18(5):210-219.
[32] JACQUEMET G, HUMPHRIES M J, CASWELL PT. Role of adhesion receptor trafficking in 3D cell migration[J]. Current opinion in cell biology, 2013, 25(5): 627-632.
[33] BURRIDGE K, CONNELL L. A new protein of adhesion plaques and ruffling membranes[J]. The Journal of cell biology, 1983, 97(2): 359-367.
[34] HYNES R O. Integrins: bidirectional, allosteric signaling machines[J]. Cell, 2002, 110(6): 673-687.
[35] QIN J, VINOGRADOVA O, PLOW E F. Integrin bidirectional signaling: a molecular view[J]. PLoS biology, 2004, 2(6): e169.
[36] GOUGH R E, GOULT B T. The tale of two talins–two isoforms to fine‐tune integrin signalling[J]. FEBS letters, 2018, 592(12): 2108-2125.
[37] DEBRAND E, EL JAI Y, SPENCE L, et al. Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms[J]. The FEBS journal, 2009, 276(6): 1610-1628.
[38] CALDERWOOD D A, CAMPBELL I D, CRITCHLEY D R. Talins and kindlins: partners in integrin-mediated adhesion[J]. Nature reviews Molecular cell biology, 2013, 14(8): 503-517.
[39] TADOKORO S, SHATTIL S J, ETO K, et al. Talin Binding to Integrin Tails: A Final Common Step in Integrin Activation[J]. Science, 2003, 302(5642):103-106.
[40] GINGRAS A R, ZIEGLER W H, FRANK R, et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod[J]. Journal of Biological Chemistry, 2005, 280(44): 37217-37224.
[41] CRITCHLEY D R. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin[J]. Annual review of biophysics, 2009, 38: 235-254.
[42] HEMMINGS L, REES D J, OHANIAN V, et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site[J]. Journal of Cell Science, 1996, 109(11): 2715-2726.
[43] LEE H S, BELLIN R M, WALKER D L, et al. Characterization of an actin-binding site within the talin FERM domain[J]. Journal of molecular biology, 2004, 343(3): 771-784.
[44] ATHERTON P, STUTCHBURY B, WANG D Y, et al. Vinculin controls talin engagement with the actomyosin machinery[J]. Nature communications, 2015, 6(1): 1-12.
[45] KUMAR A, OUYANG M, VAN DEN DRIES K, et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity[J]. Journal of Cell Biology, 2016, 213(3): 371-383.
[46] MCCANN R O, CRAIG S W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals[J]. Proceedings of the National Academy of Sciences, 1997, 94(11): 5679-5684.
[47] GINGRAS A R, BATE N, GOULT B T, et al. The structure of the C‐terminal actin‐binding domain of talin[J]. The EMBO journal, 2008, 27(2): 458-469.
[48] DEL RIO A, PEREZ-JIMENEZ R, LIU R, et al. Stretching single talin rod molecules activates vinculin binding[J]. Science, 2009, 323(5914): 638-641.
[49] YAO M, GOULT B T, CHEN H, et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation[J]. Scientific Reports, 2014, 4(1): 1-7.
[50] GOKSOY E, MA Y Q, WANG X, et al. Structural basis for the autoinhibition of talin in regulating integrin activation[J]. Molecular Cell, 2008, 31(1): 124-133.
[51] DEDDEN D, SCHUMACHER S, KELLEY C F, et al. The architecture of Talin1 reveals an autoinhibition mechanism[J]. Cell, 2019, 179(1): 120-131. e13.
[52] LI G, DU X, VASS W C, et al. Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41): 17129-17134.
[53] ZACHARCHENKO T, QIAN X, GOULT B T, et al. LD motif recognition by talin: structure of the talin-DLC1 complex[J]. Structure, 2016, 24(7): 1130-1141.
[54] CARISEY A, TSANG R, GREINER A M, et al. Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner[J]. Current Biology, 2013, 23(4): 271-281.
[55] GRASHOFF C, HOFFMAN B D, BRENNER M D, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics[J]. Nature, 2010, 466(7303): 263-266.
[56] YANG B, LIEU Z Z, WOLFENSON H, et al. Mechanosensing controlled directly by tyrosine kinases[J]. Nano Letters, 2016, 16(9): 5951-5961.
[57] CALDERWOOD D A, YAN B, DE PEREDA J M, et al. The phosphotyrosine binding-like domain of talin activates integrins[J]. Journal of Biological Chemistry, 2002, 277(24): 21749-21758.
[58] GARCı́A-ALVAREZ B, DE PEREDA J M, CALDERWOOD D A, et al. Structural determinants of integrin recognition by talin[J]. Molecular Cell, 2003, 11(1): 49-58.
[59] HU X, JING C, XU X, et al. Cooperative vinculin binding to talin mapped by time-resolved super resolution microscopy[J]. Nano Letters, 2016, 16(7): 4062-4068.
[60] CASE L B, BAIRD M A, SHTENGEL G, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions[J]. Nature Cell Biology, 2015, 17(7): 880-892.
[61] GIANNONE G, DUBIN-THALER B J, ROSSIER O, et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation[J]. Cell, 2007, 128(3): 561-575.
[62] CHOI C K, VICENTE-MANZANARES M, ZARENO J, et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner[J]. Nature Cell Biology, 2008, 10(9): 1039-1050.
[63] BALABAN N Q, SCHWARZ U S, RIVELINE D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates[J]. Nature cell biology, 2001, 3(5): 466-472.
[64] HUMPHRIES J D, WANG P, STREULI C, et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin[J]. The Journal of cell biology, 2007, 179(5): 1043-1057.
[65] JOHNSON R P, CRAIG S W. An intramolecular association between the head and tail domains of vinculin modulates talin binding[J]. Journal of Biological Chemistry, 1994, 269(17): 12611-12619.
[66] WEISS E E, KROEMKER M, RÜDIGER A H, et al. Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin[J]. The Journal of cell biology, 1998, 141(3): 755-764.
[67] KROEMKER M, RÜDIGER A H, JOCKUSCH B M, et al. Intramolecular interactions in vinculin control α-actinin binding to the vinculin head[J]. FEBS letters, 1994, 355(3): 259-262.
[68] BAKOLITSA C, COHEN D M, BANKSTON L A, et al. Structural basis for vinculin activation at sites of cell adhesion[J]. Nature, 2004, 430(6999): 583-586.
[69] BRINDLE NPJ, HOLT MR, DAVIES J E, et al. The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin[J]. Biochemical Journal, 1996, 318(3): 753-757.
[70] KIOKA N, SAKATA S, KAWAUCHI T, et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization[J]. The Journal of cell biology, 1999, 144(1): 59-69.
[71] MANDAI K, NAKANISHI H, SATOH A, et al. Ponsin/SH3P12: An l-afadin–and vinculin-binding protein localized at cell–cell and cell–matrix adherens junctions[J]. The Journal of cell biology, 1999, 144(5): 1001-1018.
[72] DEMALI K A, BARLOW C A, BURRIDGE K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion[J]. The Journal of cell biology, 2002, 159(5): 881-891.
[73] GROESCH M E, OTTO J J. Purification and characterization of an 85 kDa talin‐binding fragment of vinculin[J]. Cell motility and the cytoskeleton, 1990, 15(1): 41-50.
[74] WOOD C K, TURNER C E, JACKSON P, et al. Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin[J]. Journal of cell science, 1994, 107(2): 709-717.
[75] JOHNSON R P, NIGGLI V, DURRER P, et al. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers[J]. Biochemistry, 1998, 37(28): 10211-10222.
[76] HÜTTELMAIER S, BUBECK P, RÜDIGER M, et al. Characterization of Two F‐Actin‐Binding and Oligornerization Sites in the Cell‐Contact Protein Vinculin[J]. European journal of biochemistry, 1997, 247(3): 1136-1142.
[77] KELLEY C F, LITSCHEL T, SCHUMACHER S, et al. Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin[J]. Elife, 2020, 9: e56110.
[78] BORGON R A, VONRHEIN C, BRICOGNE G, et al. Crystal structure of human vinculin[J]. Structure, 2004, 12(7): 1189-1197.
[79] CHOREV D S, VOLBERG T, LIVNE A, et al. Conformational states during vinculin unlocking differentially regulate focal adhesion properties[J]. Scientific reports, 2018, 8(1): 1-14.
[80] CHEN H, CHOUDHURY D M, CRAIG S W. Coincidence of actin filaments and talin is required to activate vinculin[J]. Journal of Biological Chemistry, 2006, 281(52): 40389-40398.
[81] BOIS P R J, O'HARA B P, NIETLISPACH D, et al. The vinculin binding sites of talin and α-actinin are sufficient to activate vinculin[J]. Journal of Biological Chemistry, 2006, 281(11): 7228-7236.
[82] PENG X, MAIERS J L, CHOUDHURY D, et al. α-Catenin uses a novel mechanism to activate vinculin[J]. Journal of Biological Chemistry, 2012, 287(10): 7728-7737.
[83] GOLJI J, MOFRAD MRK. A molecular dynamics investigation of vinculin activation[J]. Biophysical journal, 2010, 99(4): 1073-1081.
[84] GOLJI J, WENDORFF T, MOFRAD M R K. Phosphorylation primes vinculin for activation[J]. Biophysical journal, 2012, 102(9): 2022-2030.
[85] GALBRAITH C G, YAMADA K M, SHEETZ M P. The relationship between force and focal complex development[J]. The Journal of cell biology, 2002, 159(4): 695-705.
[86] MIERKE C T, KOLLMANNSBERGER P, ZITTERBART D P, et al. Mechano-coupling and regulation of contractility by the vinculin tail domain[J]. Biophysical journal, 2008, 94(2): 661-670.
[87] THIEVESSEN I, FAKHRI N, STEINWACHS J, et al. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen[J]. The FASEB Journal, 2015, 29(11): 4555-4567.
[88] PLOTNIKOV S V, PASAPERA A M, SABASS B, et al. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration[J]. Cell, 2012, 151(7): 1513-1527.
[89] RAHMAN A, CAREY S P, KRANING-RUSH C M, et al. Vinculin regulates directionality and cell polarity in two-and three-dimensional matrix and three-dimensional microtrack migration[J]. Molecular biology of the cell, 2016, 27(9): 1431-1441.
[90] SERRA-PAGES C, MEDLEY Q G, TANG M, et al. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins[J]. Journal of Biological Chemistry, 1998, 273(25): 15611-15620.
[91] SHEN J C, UNOKI M, YTHIER D, et al. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin α1[J]. Cancer research, 2007, 67(6): 2552-2558.
[92] ASPERTI C, ASTRO V, TOTARO A, et al. Liprin-α1 promotes cell spreading on the extracellular matrix by affecting the distribution of activated integrins[J]. Journal of cell science, 2009, 122(18): 3225-3232.
[93] LETOURNEAU P C, PECH I V, ROGERS S L, et al. Growth cone migration across extracellular matrix components depends on integrin, but migration across glioma cells does not[J]. Journal of neuroscience research, 1988, 21(2‐4): 286-297.
[94] KAUFMANN N, DEPROTO J, RANJAN R, et al. Drosophila liprin-α and the receptor phosphatase Dlar control synapse morphogenesis[J]. Neuron, 2002, 34(1): 27-38.
[95] ZÜRNER M, SCHOCH S. The mouse and human Liprin-α family of scaffolding proteins: Genomic organization, expression profiling and regulation by alternative splicing[J]. Genomics, 2009, 93(3): 243-253.
[96] ASTRO V, DE CURTIS I. Plasma membrane–associated platforms: Dynamic scaffolds that organize membrane-associated events[J]. Science Signaling, 2015, 8(367): re1-re1.
[97] HOTTA A, KAWAKATSU T, NAKATANI T, et al. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5α/β[J]. Journal of Cell Biology, 2010, 189(5): 901-917.
[98] Protein Data Bank: the single global archive for 3D macromolecular structure data[J]. Nucleic acids research, 2019, 47(D1): D520-D528.
[99] MITCHELL A L, ALMEIDA A, BERACOCHEA M, et al. MGnify: the microbiome analysis resource in 2020[J]. Nucleic acids research, 2020, 48(D1): D570-D578.
[100]KRYSHTAFOVYCH A, SCHWEDE T, TOPF M, et al. Critical assessment of methods of protein structure prediction (CASP)—Round XIII[J]. Proteins: Structure, Function, and Bioinformatics, 2019, 87(12): 1011-1020.
[101]JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[102]MCCOY A J, GROSSE-KUNSTLEVE R W, ADAMS P D, et al. Phaser crystallographic software[J]. Journal of applied crystallography, 2007, 40(4): 658-674.
[103]ADAMS P D, AFONINE P V, BUNKÓCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallographica Section D: Biological Crystallography, 2010, 66(2): 213-221.
[104]EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta crystallographica section D: biological crystallography, 2004, 60(12): 2126-2132.
[105]ANTHIS N J, WEGENER K L, YE F, et al. The structure of an integrin/talin complex reveals the basis of inside‐out signal transduction[J]. The EMBO journal, 2009, 28(22): 3623-3632.
[106]WANG Y, KAKINUMA N, ZHU Y, et al. Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of β-catenin[J]. Journal of cell science, 2006, 119(19): 4002-4010.
[107]YAO M, GOULT B T, KLAPHOLZ B, et al. The mechanical response of talin[J]. Nature communications, 2016, 7(1): 1-11.
[108]YAN J, YAO M, GOULT B T, et al. Talin dependent mechanosensitivity of cell focal adhesions[J]. Cellular and molecular bioengineering, 2015, 8(1): 151-159.
[109]GINGRAS A R, BATE N, GOULT B T, et al. Central Region of Talin Has a Unique Fold That Binds Vinculin and Actin [S][J]. Journal of Biological Chemistry, 2010, 285(38): 29577-29587.
[110]KRIAJEVSKA M, FISCHER-LARSEN M, MOERTZ E, et al. Liprin β1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1)[J]. Journal of Biological Chemistry, 2002, 277(7): 5229-5235.
[111]NORRMÉN C, VANDEVELDE W, NY A, et al. Liprin β1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity[J]. Blood, The Journal of the American Society of Hematology, 2010, 115(4): 906-909.
[112]KOUBA T, VOGEL D, THORKELSSON S R, et al. Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity[J]. Nature communications, 2021, 12(1): 1-18.
[113]RAFIQ N B M, NISHIMURA Y, PLOTNIKOV S V, et al. A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions[J]. Nature materials, 2019, 18(6): 638-649.

所在学位评定分委会
生物系
国内图书分类号
Q518
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342767
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张婧. KANK 家族蛋白在黏着斑动态调控中的作用机制研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930160-张婧-生物系.pdf(14650KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张婧]的文章
百度学术
百度学术中相似的文章
[张婧]的文章
必应学术
必应学术中相似的文章
[张婧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。