[1] ARNAOUT M A, GOODMAN S L, XIONG J P . Structure and mechanics of integrin-based cell adhesion[J]. Current Opinion in Cell Biology, 2007, 19(5):495-507.
[2] WEHRLE-HALLER B. Assembly and disassembly of cell matrix adhesions.[J]. Current Opinion in Cell Biology, 2012, 24(5).
[3] STEHBENS S, WITTMANN T. Targeting and transport: how microtubules control focal adhesion dynamics[J]. Journal of Cell Biology, 2012, 198(4): 481-489.
[4] BACHIR A I, ZARENO J, MOISSOGLU K, et al. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions[J]. Current Biology, 2014, 24(16): 1845-1853.
[5] EZRATTY E J, BERTAUX C, MARCANTONIO E E, et al. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells[J]. The Journal of Cell Biology, 2009, 187(5):733-747.
[6] GEIGER B, YAMADA K M. Molecular Architecture and Function of Matrix Adhesions[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(5):53-69.
[7] SUN Z, TSENG H Y, TAN S, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesionformation[J]. Nature Cell Biology, 2016, 18(9):941.
[8] BOUCHET B P, GOUGH R E, AMMON Y C, et al.Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions[J]. Elife, 2016, 5.
[9] ROSSIER O, OCTEAU V, SIBARITA J B, et al. Integrins β 1 and β 3 exhibit distinct dynamic nanoscale organizations inside focal adhesions[J]. Nature Cell Biology, 2012, 14(10):1057-1067.
[10] BACHIR A I, ZARENO J, MOISSOGLU K, et al. Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions.[J]. Current Biology, 2014, 24(16):1845-1853.
[11] ZHU Y, KAKINUMA N, WANG Y, et al. Kank proteins: A new family of ankyrin-repeat domain-containing proteins[J]. BBA - General Subjects, 2008, 1780(2):128-133.
[12] CHEN N P , SUN Z , REINHARD F. The Kank family proteins in adhesion dynamics[J]. Current opinion in cell biology, 2018, 54:130-136.
[13] HENSLEY M R, CUI Z, CHUA R, et al. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development[J]. Scientific Reports, 2016, 6(1):27816.
[14] SARKAR S, ROY B C, HATANO N, et al. A Novel Ankyrin Repeat-containing Gene (Kank) Located at 9p24 Is a Growth Suppressor of Renal Cell Carcinoma[J]. Journal of Biological Chemistry, 2002, 277(39):36585.
[15] GEE H Y, ZHANG F, ASHRAF S, et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome.[J]. Journal of Clinical Investigation, 2015, 125(6):2375.
[16] LERER I, SAGI M, MEINER V, et al. Deletion of the ANKRD15 gene at 9p24. 3 causes parent-of-origin-dependent inheritance of familial cerebral palsy[J]. Human molecular genetics, 2005, 14(24): 3911-3920.
[17] WEAVERS H, PRIETO-SANCHEZ S, GRAWE F, et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm[J]. Nature.
[18] DING M, GONCHAROV A, JIN Y, et al. C. elegans ankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis[J]. Development, 2003, 130(23):5791-801.
[19] IHARA S, HAGEDORN E J, MORRISSEY M A, et al. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans.[J]. Nature Cell Biology, 2011, 13(6):641-651.
[20] YONG Y, SUK L W, XIA T, et al. Extracellular Matrix Regulates UNC-6 (Netrin) Axon Guidance by Controlling the Direction of Intracellular UNC-40 (DCC) Outgrowth Activity[J]. Plos One, 2014, 9(5):e97258.
[21] KAKINUMA N, ZHU Y, WANG Y, et al. Kank proteins: structure, functions and diseases[J]. Cellular and Molecular Life Sciences, 2009, 66(16):2651-2659.
[22] LUO M, MENGOS A E, MANDARINO L J, et al. Association of liprin β‐1 with kank proteins in melanoma[J]. Experimental Dermatology, 2016, 25(4).
[23] VAN DER VAART B, VAN RIEL W E, DOODHI H, et al. CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor[J]. Developmental cell, 2013, 27(2): 145-160.
[24] KAKINUMA N, KIYAMA R. A major mutation of KIF21A associated with congenital fibrosis of the extraocular muscles type 1 (CFEOM1) enhances translocation of Kank1 to the membrane[J]. Biochemical & Biophysical Research Communications, 2009, 386(4):639-644.
[25] STEHBENS S J, PASZEK M, PEMBLE H, et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover[J]. Nature Cell Biology, 2014, 16(6):561-573.
[26] LANSBERGEN G, GRIGORIEV I, MIMORI-KIYOSUE Y, et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta.[J]. Developmental Cell, 2006, 11(1):21-32.
[27] WU X, SHEN QT, ORISTIAN D S, et al. Skin Stem Cells Orchestrate Directional Migration by Regulating Microtubule-ACF7 Connections through GSK3β[J]. Cell, 2011, 144(3):341-352.
[28] YUE J, ZHANG Y, LIANG WG, et al. In vivo epidermal migration requires focal adhesion targeting of ACF7[J]. Nature communications, 2016, 7(1): 1-15.
[29] WU X, KODAMA A, FUCHS E. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity.[J]. Cell, 2008, 135(1):137-148.
[30] ASTRO V, CHIARETTI S, MAGISTRATI E, et al. Liprin-α1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration[J]. Journal of Cell Science, 2014, 127(17):3862.
[31] BIRKENFELD J, NALBANT P, YOON S H, et al. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis?[J]. Trends in Cell Biology, 2008, 18(5):210-219.
[32] JACQUEMET G, HUMPHRIES M J, CASWELL PT. Role of adhesion receptor trafficking in 3D cell migration[J]. Current opinion in cell biology, 2013, 25(5): 627-632.
[33] BURRIDGE K, CONNELL L. A new protein of adhesion plaques and ruffling membranes[J]. The Journal of cell biology, 1983, 97(2): 359-367.
[34] HYNES R O. Integrins: bidirectional, allosteric signaling machines[J]. Cell, 2002, 110(6): 673-687.
[35] QIN J, VINOGRADOVA O, PLOW E F. Integrin bidirectional signaling: a molecular view[J]. PLoS biology, 2004, 2(6): e169.
[36] GOUGH R E, GOULT B T. The tale of two talins–two isoforms to fine‐tune integrin signalling[J]. FEBS letters, 2018, 592(12): 2108-2125.
[37] DEBRAND E, EL JAI Y, SPENCE L, et al. Talin 2 is a large and complex gene encoding multiple transcripts and protein isoforms[J]. The FEBS journal, 2009, 276(6): 1610-1628.
[38] CALDERWOOD D A, CAMPBELL I D, CRITCHLEY D R. Talins and kindlins: partners in integrin-mediated adhesion[J]. Nature reviews Molecular cell biology, 2013, 14(8): 503-517.
[39] TADOKORO S, SHATTIL S J, ETO K, et al. Talin Binding to Integrin Tails: A Final Common Step in Integrin Activation[J]. Science, 2003, 302(5642):103-106.
[40] GINGRAS A R, ZIEGLER W H, FRANK R, et al. Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod[J]. Journal of Biological Chemistry, 2005, 280(44): 37217-37224.
[41] CRITCHLEY D R. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin[J]. Annual review of biophysics, 2009, 38: 235-254.
[42] HEMMINGS L, REES D J, OHANIAN V, et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site[J]. Journal of Cell Science, 1996, 109(11): 2715-2726.
[43] LEE H S, BELLIN R M, WALKER D L, et al. Characterization of an actin-binding site within the talin FERM domain[J]. Journal of molecular biology, 2004, 343(3): 771-784.
[44] ATHERTON P, STUTCHBURY B, WANG D Y, et al. Vinculin controls talin engagement with the actomyosin machinery[J]. Nature communications, 2015, 6(1): 1-12.
[45] KUMAR A, OUYANG M, VAN DEN DRIES K, et al. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity[J]. Journal of Cell Biology, 2016, 213(3): 371-383.
[46] MCCANN R O, CRAIG S W. The I/LWEQ module: a conserved sequence that signifies F-actin binding in functionally diverse proteins from yeast to mammals[J]. Proceedings of the National Academy of Sciences, 1997, 94(11): 5679-5684.
[47] GINGRAS A R, BATE N, GOULT B T, et al. The structure of the C‐terminal actin‐binding domain of talin[J]. The EMBO journal, 2008, 27(2): 458-469.
[48] DEL RIO A, PEREZ-JIMENEZ R, LIU R, et al. Stretching single talin rod molecules activates vinculin binding[J]. Science, 2009, 323(5914): 638-641.
[49] YAO M, GOULT B T, CHEN H, et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation[J]. Scientific Reports, 2014, 4(1): 1-7.
[50] GOKSOY E, MA Y Q, WANG X, et al. Structural basis for the autoinhibition of talin in regulating integrin activation[J]. Molecular Cell, 2008, 31(1): 124-133.
[51] DEDDEN D, SCHUMACHER S, KELLEY C F, et al. The architecture of Talin1 reveals an autoinhibition mechanism[J]. Cell, 2019, 179(1): 120-131. e13.
[52] LI G, DU X, VASS W C, et al. Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK)[J]. Proceedings of the National Academy of Sciences, 2011, 108(41): 17129-17134.
[53] ZACHARCHENKO T, QIAN X, GOULT B T, et al. LD motif recognition by talin: structure of the talin-DLC1 complex[J]. Structure, 2016, 24(7): 1130-1141.
[54] CARISEY A, TSANG R, GREINER A M, et al. Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner[J]. Current Biology, 2013, 23(4): 271-281.
[55] GRASHOFF C, HOFFMAN B D, BRENNER M D, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics[J]. Nature, 2010, 466(7303): 263-266.
[56] YANG B, LIEU Z Z, WOLFENSON H, et al. Mechanosensing controlled directly by tyrosine kinases[J]. Nano Letters, 2016, 16(9): 5951-5961.
[57] CALDERWOOD D A, YAN B, DE PEREDA J M, et al. The phosphotyrosine binding-like domain of talin activates integrins[J]. Journal of Biological Chemistry, 2002, 277(24): 21749-21758.
[58] GARCı́A-ALVAREZ B, DE PEREDA J M, CALDERWOOD D A, et al. Structural determinants of integrin recognition by talin[J]. Molecular Cell, 2003, 11(1): 49-58.
[59] HU X, JING C, XU X, et al. Cooperative vinculin binding to talin mapped by time-resolved super resolution microscopy[J]. Nano Letters, 2016, 16(7): 4062-4068.
[60] CASE L B, BAIRD M A, SHTENGEL G, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions[J]. Nature Cell Biology, 2015, 17(7): 880-892.
[61] GIANNONE G, DUBIN-THALER B J, ROSSIER O, et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation[J]. Cell, 2007, 128(3): 561-575.
[62] CHOI C K, VICENTE-MANZANARES M, ZARENO J, et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner[J]. Nature Cell Biology, 2008, 10(9): 1039-1050.
[63] BALABAN N Q, SCHWARZ U S, RIVELINE D, et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates[J]. Nature cell biology, 2001, 3(5): 466-472.
[64] HUMPHRIES J D, WANG P, STREULI C, et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin[J]. The Journal of cell biology, 2007, 179(5): 1043-1057.
[65] JOHNSON R P, CRAIG S W. An intramolecular association between the head and tail domains of vinculin modulates talin binding[J]. Journal of Biological Chemistry, 1994, 269(17): 12611-12619.
[66] WEISS E E, KROEMKER M, RÜDIGER A H, et al. Vinculin is part of the cadherin–catenin junctional complex: complex formation between α-catenin and vinculin[J]. The Journal of cell biology, 1998, 141(3): 755-764.
[67] KROEMKER M, RÜDIGER A H, JOCKUSCH B M, et al. Intramolecular interactions in vinculin control α-actinin binding to the vinculin head[J]. FEBS letters, 1994, 355(3): 259-262.
[68] BAKOLITSA C, COHEN D M, BANKSTON L A, et al. Structural basis for vinculin activation at sites of cell adhesion[J]. Nature, 2004, 430(6999): 583-586.
[69] BRINDLE NPJ, HOLT MR, DAVIES J E, et al. The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin[J]. Biochemical Journal, 1996, 318(3): 753-757.
[70] KIOKA N, SAKATA S, KAWAUCHI T, et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization[J]. The Journal of cell biology, 1999, 144(1): 59-69.
[71] MANDAI K, NAKANISHI H, SATOH A, et al. Ponsin/SH3P12: An l-afadin–and vinculin-binding protein localized at cell–cell and cell–matrix adherens junctions[J]. The Journal of cell biology, 1999, 144(5): 1001-1018.
[72] DEMALI K A, BARLOW C A, BURRIDGE K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion[J]. The Journal of cell biology, 2002, 159(5): 881-891.
[73] GROESCH M E, OTTO J J. Purification and characterization of an 85 kDa talin‐binding fragment of vinculin[J]. Cell motility and the cytoskeleton, 1990, 15(1): 41-50.
[74] WOOD C K, TURNER C E, JACKSON P, et al. Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin[J]. Journal of cell science, 1994, 107(2): 709-717.
[75] JOHNSON R P, NIGGLI V, DURRER P, et al. A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers[J]. Biochemistry, 1998, 37(28): 10211-10222.
[76] HÜTTELMAIER S, BUBECK P, RÜDIGER M, et al. Characterization of Two F‐Actin‐Binding and Oligornerization Sites in the Cell‐Contact Protein Vinculin[J]. European journal of biochemistry, 1997, 247(3): 1136-1142.
[77] KELLEY C F, LITSCHEL T, SCHUMACHER S, et al. Phosphoinositides regulate force-independent interactions between talin, vinculin, and actin[J]. Elife, 2020, 9: e56110.
[78] BORGON R A, VONRHEIN C, BRICOGNE G, et al. Crystal structure of human vinculin[J]. Structure, 2004, 12(7): 1189-1197.
[79] CHOREV D S, VOLBERG T, LIVNE A, et al. Conformational states during vinculin unlocking differentially regulate focal adhesion properties[J]. Scientific reports, 2018, 8(1): 1-14.
[80] CHEN H, CHOUDHURY D M, CRAIG S W. Coincidence of actin filaments and talin is required to activate vinculin[J]. Journal of Biological Chemistry, 2006, 281(52): 40389-40398.
[81] BOIS P R J, O'HARA B P, NIETLISPACH D, et al. The vinculin binding sites of talin and α-actinin are sufficient to activate vinculin[J]. Journal of Biological Chemistry, 2006, 281(11): 7228-7236.
[82] PENG X, MAIERS J L, CHOUDHURY D, et al. α-Catenin uses a novel mechanism to activate vinculin[J]. Journal of Biological Chemistry, 2012, 287(10): 7728-7737.
[83] GOLJI J, MOFRAD MRK. A molecular dynamics investigation of vinculin activation[J]. Biophysical journal, 2010, 99(4): 1073-1081.
[84] GOLJI J, WENDORFF T, MOFRAD M R K. Phosphorylation primes vinculin for activation[J]. Biophysical journal, 2012, 102(9): 2022-2030.
[85] GALBRAITH C G, YAMADA K M, SHEETZ M P. The relationship between force and focal complex development[J]. The Journal of cell biology, 2002, 159(4): 695-705.
[86] MIERKE C T, KOLLMANNSBERGER P, ZITTERBART D P, et al. Mechano-coupling and regulation of contractility by the vinculin tail domain[J]. Biophysical journal, 2008, 94(2): 661-670.
[87] THIEVESSEN I, FAKHRI N, STEINWACHS J, et al. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen[J]. The FASEB Journal, 2015, 29(11): 4555-4567.
[88] PLOTNIKOV S V, PASAPERA A M, SABASS B, et al. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration[J]. Cell, 2012, 151(7): 1513-1527.
[89] RAHMAN A, CAREY S P, KRANING-RUSH C M, et al. Vinculin regulates directionality and cell polarity in two-and three-dimensional matrix and three-dimensional microtrack migration[J]. Molecular biology of the cell, 2016, 27(9): 1431-1441.
[90] SERRA-PAGES C, MEDLEY Q G, TANG M, et al. Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins[J]. Journal of Biological Chemistry, 1998, 273(25): 15611-15620.
[91] SHEN J C, UNOKI M, YTHIER D, et al. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin α1[J]. Cancer research, 2007, 67(6): 2552-2558.
[92] ASPERTI C, ASTRO V, TOTARO A, et al. Liprin-α1 promotes cell spreading on the extracellular matrix by affecting the distribution of activated integrins[J]. Journal of cell science, 2009, 122(18): 3225-3232.
[93] LETOURNEAU P C, PECH I V, ROGERS S L, et al. Growth cone migration across extracellular matrix components depends on integrin, but migration across glioma cells does not[J]. Journal of neuroscience research, 1988, 21(2‐4): 286-297.
[94] KAUFMANN N, DEPROTO J, RANJAN R, et al. Drosophila liprin-α and the receptor phosphatase Dlar control synapse morphogenesis[J]. Neuron, 2002, 34(1): 27-38.
[95] ZÜRNER M, SCHOCH S. The mouse and human Liprin-α family of scaffolding proteins: Genomic organization, expression profiling and regulation by alternative splicing[J]. Genomics, 2009, 93(3): 243-253.
[96] ASTRO V, DE CURTIS I. Plasma membrane–associated platforms: Dynamic scaffolds that organize membrane-associated events[J]. Science Signaling, 2015, 8(367): re1-re1.
[97] HOTTA A, KAWAKATSU T, NAKATANI T, et al. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5α/β[J]. Journal of Cell Biology, 2010, 189(5): 901-917.
[98] Protein Data Bank: the single global archive for 3D macromolecular structure data[J]. Nucleic acids research, 2019, 47(D1): D520-D528.
[99] MITCHELL A L, ALMEIDA A, BERACOCHEA M, et al. MGnify: the microbiome analysis resource in 2020[J]. Nucleic acids research, 2020, 48(D1): D570-D578.
[100]KRYSHTAFOVYCH A, SCHWEDE T, TOPF M, et al. Critical assessment of methods of protein structure prediction (CASP)—Round XIII[J]. Proteins: Structure, Function, and Bioinformatics, 2019, 87(12): 1011-1020.
[101]JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[102]MCCOY A J, GROSSE-KUNSTLEVE R W, ADAMS P D, et al. Phaser crystallographic software[J]. Journal of applied crystallography, 2007, 40(4): 658-674.
[103]ADAMS P D, AFONINE P V, BUNKÓCZI G, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution[J]. Acta Crystallographica Section D: Biological Crystallography, 2010, 66(2): 213-221.
[104]EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta crystallographica section D: biological crystallography, 2004, 60(12): 2126-2132.
[105]ANTHIS N J, WEGENER K L, YE F, et al. The structure of an integrin/talin complex reveals the basis of inside‐out signal transduction[J]. The EMBO journal, 2009, 28(22): 3623-3632.
[106]WANG Y, KAKINUMA N, ZHU Y, et al. Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of β-catenin[J]. Journal of cell science, 2006, 119(19): 4002-4010.
[107]YAO M, GOULT B T, KLAPHOLZ B, et al. The mechanical response of talin[J]. Nature communications, 2016, 7(1): 1-11.
[108]YAN J, YAO M, GOULT B T, et al. Talin dependent mechanosensitivity of cell focal adhesions[J]. Cellular and molecular bioengineering, 2015, 8(1): 151-159.
[109]GINGRAS A R, BATE N, GOULT B T, et al. Central Region of Talin Has a Unique Fold That Binds Vinculin and Actin [S][J]. Journal of Biological Chemistry, 2010, 285(38): 29577-29587.
[110]KRIAJEVSKA M, FISCHER-LARSEN M, MOERTZ E, et al. Liprin β1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1)[J]. Journal of Biological Chemistry, 2002, 277(7): 5229-5235.
[111]NORRMÉN C, VANDEVELDE W, NY A, et al. Liprin β1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity[J]. Blood, The Journal of the American Society of Hematology, 2010, 115(4): 906-909.
[112]KOUBA T, VOGEL D, THORKELSSON S R, et al. Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity[J]. Nature communications, 2021, 12(1): 1-18.
[113]RAFIQ N B M, NISHIMURA Y, PLOTNIKOV S V, et al. A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions[J]. Nature materials, 2019, 18(6): 638-649.
修改评论