题名 | 基于Black-Litterman模型的行业资产配置投资方案研究 |
其他题名 | RESEARCH ON INDUSTRY ASSET ALLOCATIONIN INVESTMENT PORTFOLIO BASED ONTHE BLACK-LITTERMAN MODEL-GENERATING INVESTOR VIEWSWITH GRU NEURAL NETWORK
|
姓名 | |
姓名拼音 | ZHANG Yanpeng
|
学号 | 12032824
|
学位类型 | 硕士
|
学位专业 | 0701 数学
|
学科门类/专业学位类别 | 07 理学
|
导师 | |
导师单位 | 南方科技大学;金融系
|
论文答辩日期 | 2022-05-06
|
论文提交日期 | 2022-06-24
|
学位授予单位 | 南方科技大学
|
学位授予地点 | 深圳
|
摘要 | 随着我国经济实力的发展,我国国民可支配收入持续增加,居民对于资产配置的需求日益凸显。根据Wind公开数据,近十年基金市场整体资产规模增长近12倍,年几何平均增长率高达27.93%。而我国基金市场的资产配置理论还处在初级发展阶段,相比于西方发达市场,资产量化分析的市场占比还非常低,缺乏行之有效的行业资产配置策略。 而随着机器学习理论的发展和硬件的升级,神经网络在金融时间序列数据处理上的应用更是成为了近些年来的研究热点。2014年提出的门控循环单元(GRU)神经网络模型,能够通过门控逻辑和循环结构处理非线性、非平稳的时间序列,并记忆序列的长期信息,解决梯度消失的问题。因此,将新型神经网络模型和资产配置模型结合指导投资组合的构建也就成为了有探索价值的研究方向。 本文在传统的Black-Litterman资产配置模型的基础上,开创性地引入了GRU神经网络算法预测资产收益率从而生成投资者观点向量,指导行业资产配置。在实证上,本文选择了全面覆盖中国A股市场的中证全指一级行业指数作为标的资产,通过GRU模型预测行业指数的预期收益率,并结合模型训练效果使用模型平均绝对误差生成投资者观点信心水平矩阵,进而结合行业指数在市场均衡状态下的先验收益分布,通过BL模型中的贝叶斯收缩推断出后验预期收益率的分布,最后通过二次规划逆推出最优资产配置比例,构建了行业指数投资组合。 本文开创性构造的GRU-BL模型,解决了传统BL模型投资者主观观点选择过于随意且参数设置过于简单以及时间序列类BL模型对非线性不平稳收益序列拟合效果不佳且存在梯度消失现象的问题。最终的实证结果表明,GRU-BL模型给出的最优资产配置权重在真实市场上的超额收益率及夏普比率均高于均值方差模型和市场权重模型,整体表现优异。 |
其他摘要 | With the rapid development of China's economy and the continuous increase of national disposable income, residents' demand for asset allocation has become increasingly prominent. According to Wind's public data, the overall asset size of the Chinese mainland fund market has increased by nearly 12 times in the past decade, with an annual geometric average growth rate of 27.93%. However, the asset allocation theory of our country's fund market is still in the initial stage of development, and the market share of quantitative analysis is still small compared to developed western markets, and there is a lack of effective industry asset allocation strategies. With the development of machine learning theory and the upgrade of hardware, the application of neural network in financial time series data processing has become a research hotspot in recent years. The Gated Recurrent Unit (GRU) neural network model, which proposed in 2014, can process non-linear and non-stationary time series data through gated logic and cyclic structure, and memorize long-term information of the sequence to solve the vanishing gradient problem. Therefore, the combination of the new neural network model and the asset allocation model to guide the construction of the investment portfolio has become a research direction with exploratory value. Based on the traditional Black-Litterman asset allocation model, this paper innovatively introduces the GRU neural network algorithm to predict asset returns to generate investor view vectors, which ultimately guide industry asset allocation. Empirically, this paper selects the CSI Tier 1 Industry Indexes, which comprehensively covers China's A-share market, as the underlying asset. This paper uses the GRU model to predict the expected return of the industry indexes and combines the model training effect to generate the investor view confidence level matrix using the model mean absolute error. Subsequently, combined with the prior return distribution of the industry indexes in the market equilibrium state, the distribution of the posterior expected return is inferred through the Bayesian contraction in the BL model. Finally, the optimal asset allocation ratio is inversely derived through quadratic linear programming, and an industry index portfolio is constructed. The groundbreaking GRU-BL model constructed in this paper solves the problem that the traditional BL model investors choose too arbitrarily, the parameter setting is too simple, and the time series BL model has poor fitting effect on nonlinear or non-stationary income series coupled with vanishing gradient phenomenon. The final empirical results show that the excess return and Sharpe ratio of the optimal asset allocation weight given by the GRU-BL model in the real market are higher than those of the mean variance model and the market weight model. |
关键词 | |
其他关键词 | |
语种 | 中文
|
培养类别 | 独立培养
|
入学年份 | 2020
|
学位授予年份 | 2022-06
|
参考文献列表 | [1] MARKOWITZ H M. Portfolio Selection, 1959[J]. Journal of Finance, 1952, 7: 7791. |
所在学位评定分委会 | 金融系
|
国内图书分类号 | F830.593
|
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/342768 |
专题 | 商学院_金融系 |
推荐引用方式 GB/T 7714 |
张燕鹏. 基于Black-Litterman模型的行业资产配置投资方案研究[D]. 深圳. 南方科技大学,2022.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12032824-张燕鹏-金融系.pdf(1770KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[张燕鹏]的文章 |
百度学术 |
百度学术中相似的文章 |
[张燕鹏]的文章 |
必应学术 |
必应学术中相似的文章 |
[张燕鹏]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论