中文版 | English
题名

液态金属三维导电网络连通的SiOx负极研究

其他题名
RESEARCH ON SIOXANODE CONNECTED BY LIQUID METAL THREE-DIMENSIONAL CONDUCTIVE NETWORK
姓名
姓名拼音
TANG Quanming
学号
12032555
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
邓永红
导师单位
材料科学与工程系
论文答辩日期
2022-05-13
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着各领域对电池能量密度的需求不断提高,锂离子电池中传统的石墨负极因比容量低越来越难以满足需求。比容量大的硅基负极,则因为在嵌锂过程中体积膨胀太大而无法使用。而硅氧材料由于低于纯硅的膨胀效应,更具有实现电池长循环,高负载的潜力。为了加快硅氧基动力电池的产业化和提升其电化学性能,深入研究硅氧基负极存在的关键问题和应对策略尤为重要。

将液态金属引入硅氧基负极可以显著改善硅氧材料带来的膨胀效果,稳定SEI结构。本论文采用Ga:Sn9:1比例的液态金属原料引入到SiOx材料中,经过优化两者的混合比例,利用简单的超声分散技术,制备了液态金属与SiOx的复合粉末。并将复合活性物质制备成电极,其电池表现出优异的电化学性能。

制备出的不同液态金属比例的复合电极中,液态金属占比为50%表现出最佳的电池性能。复合电极在0.4 mg cm-2负载时,在0.5 C倍率电流下循环200圈和300圈容量保持率分别达到了83.19%63.27%,在1 C倍率电流下循环200圈和300圈的容量保持率分别达到了96.50%76.65%。此性能明显优于纯硅氧材料与添加了10%导电剂的硅氧材料。另外通过倍率性能测试表明,复合电极在高倍率电流情况下依旧能发挥出稳定容量,其容量回复率达到了100.06%。最后对复合电极进行了循环伏安测试与交流阻抗测试,显示出复合电极稳定的可逆性。

本文将循环不同圈数的复合电极进行电池拆解,用SEMTEM表征了电极中的复合粉末结构变化。发现纳米级液态金属液滴在循环过程中可自发形成三维导电网络,后续还对复合电极进行了原位XRD测试,显示了复合电极材料在循环过程中材料成分的原位变化。揭示了液态金属在电极中的作用机理,为硅氧复合负极的设计、制备、应用提供了理论指导与实践基础。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-06
参考文献列表

[1] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today 2012, 7(5): 414-429.
[2] WOO K C, MERTWOY H, FISCHER J E, et al. Experimental phase diagram of lithium-intercalated graphite[J]. Phys. Rev. B 1983, 27(12): 7831-7834.
[3] WANG Q, ZHONG L, SUN J, et al. A facile layer-by-layer adsorption and reaction method to the preparation of titanium phosphate ultrathin films[J]. Chem. Mater. 2005, 17(13): 3563-3569.
[4] BALOGUN M-S, LUO Y, QIU W, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon 2016, 98: 162-178.
[5] MATSUMOTO K, LI J, OHZAWA Y, et al. Surface structure and electrochemical characteristics of natural graphite fluorinated by ClF3[J]. J. Fluorine Chem. 2006, 127(10): 1383-1389.
[6] KURIBAYASHI I, YOKOYAMA M, YAMASHITA M. Battery characteristics with various carbonaceous materials[J]. J. Power Sources 1995, 54(1): 1-5.
[7] PAN Q, GUO K, WANG L, et al. Ionic conductive copolymer encapsulated graphite as an anode material for lithium ion batteries[J]. Solid State Ion. 2002, 149(3): 193-200.
[8] DONG J, XUE Y, ZHANG C, et al. Improved Li+ storage through homogeneous N-doping within highly branched tubular graphitic foam[J]. Adv. Mater. 2017, 29, 1603692.
[9] JAISWAL A, HORNE C R, CHANG O, et al. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries[J]. J. Electrochem. Soc. 2009, 156(12): A1014.
[10] WANG X, LI X, SUN X, et al. Nanostructured NiO electrode for high rate Li-ion batteries[J]. J. Mater. Chem. 2011, 21(11): 3571.
[11] JUNG H-G, KIM J, SCROSATI B, et al. Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries[J]. J. Power Sources 2011, 196(18): 7763-7766.
[12] ZIJING D, LIANG Z, LIUMIN S U O, et al. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study[J]. Phys. Chem. Chem. Phys. 2011, 13(33): 15127-15133.
[13] GOODENOUGH J B, PARK K-S. The Li-ion rechargeable battery: a perspective[J]. J. Am. Chem. Soc. 2013, 135(4): 1167-1176.
[14] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochim. Acta 2006, 51(25): 5334-5340.
[15] OTA H, SHIMA K, UE M, et al. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode[J]. Electrochimica. Acta 2004, 49(4): 565-572.
[16] LI Z, HUANG J, YANN LIAW B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. J. Power Sources 2014, 254: 168-182.
[17] LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angew. Chem. Int. Ed. 2018, 57(6): 1505-1509.
[18] YANG C-P, YIN Y-X, ZHANG S-F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nat. Commun. 2015, 6(1): 8058-8058.
[19] SONG T, XIA J, LEE J-H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Lett. 2010, 10(5): 1710-1716.
[20] LIU Y, HUDAK N S, HUBER D L, et al. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles[J]. Nano Lett. 2011, 11(10): 4188-4194.
[21] PARK C-M, KIM J-H, KIM H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chem. Soc. Rev. 2010, 39(8): 3115-3141.
[22] HANSU K I M, JUNGHEE C, SOHN H J, et al. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries[J]. J. Electrochem. Soc. 1999, 146(12): 4401-4405.
[23] HWANG S-M, LEE H-Y, JANG S-W, et al. Lithium insertion in SiAg powders produced by mechanical alloying[J]. Electrochem. Solid-State Lett. 2001, 4(7): A97.
[24] WANG X-L, HAN W-Q, CHEN J, et al. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces 2010, 2(5): 1548-1551.
[25] SEO J-U, PARK C-M. Nanostructured SnSb/MOx (M = Al or Mg)/C composites: Hybrid mechanochemical synthesis and excellent Li storage performances[J]. J. Mater. Chem. A 2013, 1(48): 15316-15322.
[26] SAADAT S, TAY Y Y, ZHU J, et al. Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-ion battery anodes[J]. Chem. Mater. 2011, 23(4): 1032-1038.
[27] JIANG J, LI Y, LIU J, et al. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes[J]. Nanoscale 2011, 3(1): 45-58.
[28] DEMIR-CAKAN R, HU Y-S, ANTONIETTI M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties[J]. Chem. Mater. 2008, 20(4): 1227-1229.
[29] LOU X W, WANG Y, YUAN C, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity[J]. Adv. Mater. 2006, 18(17): 2325-2329.
[30] KO Y-D, KANG J-G, PARK J-G, et al. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries[J]. Nanotechnology 2009, 20(45): 455701.
[31] MEDURI P, PENDYALA C, KUMAR V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries[J]. Nano Lett. 2009, 9(2): 612-616.
[32] LIU J, LI Y, HUANG X, et al. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries[J]. J. Mater. Chem. 2009, 19(13): 1859-1864.
[33] WEN Z, CI S, MAO S, et al. CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries[J]. Nanoscale Res. Lett. 2013, 8(1): 1-6.
[34] YANG Z, CHOI D, KERISIT S, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review[J]. J. Power Sources 2009, 192(2): 588-598.
[35] HU Y S, KIENLE L, GUO Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Adv. Mater. 2006, 18(11): 1421-1426.
[36] XIN X, ZHOU X, WU J, et al. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries[J]. ACS Nano 2012, 6(12): 11035-11043.
[37] DING S, CHEN J S, LUAN D, et al. Graphene-supported anatase TiO2 nanosheets for fast lithium storage[J]. Chem. Commun. 2011, 47(20): 5780-5782.
[38] WANG D, CHOI D, LI J, et al. Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-Ion insertion[J]. ACS Nano 2009, 3(4): 907-914.
[39] CAO F-F, GUO Y-G, ZHENG S-F, et al. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem[J]. Chem. Mater. 2010, 22(5): 1908-1914.
[40] LIAO J-Y, HIGGINS D, LUI G, et al. Multifunctional TiO2–C/MnO2 core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries[J]. Nano Lett. 2013, 13(11): 5467-5473.
[41] LAI H, LI J, CHEN Z, et al. Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-Ion batteries[J]. ACS Appl. Mater. Interfaces 2012, 4(5): 2325-2328.
[42] WANG H, CUI L-F, YANG Y, et al. Mn3O4−graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J. Am. Chem. Soc. 2010, 132(40): 13978-13980.
[43] LI L, RAJI A-R O, TOUR J M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries[J]. Adv. Mater. 2013, 25(43): 6298-6302.
[44] LI X, LI D, QIAO L, et al. Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes[J]. J. Mater. Chem. 2012, 22(18): 9189-9194.
[45] MCDOWELL M T, LEE S W, NIX W D, et al. 25th Anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-Ion batteries[J]. Adv. Mater. 2013, 25(36): 4966-4985.
[46] SHI Y, WAN J, LI J-Y, et al. Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries[J]. Nano Energy 2019, 61: 304-310.
[47] YU B-C, HWA Y, KIM J-H, et al. A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites[J]. Electrochim. Acta 2014, 117: 426-430.
[48] YU B-C, HWA Y, PARK C-M, et al. Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries[J]. J. Mater. Chem. A 2013, 1(15): 4820.
[49] YANG J. SiOx-based anodes for secondary lithium batteries[J]. Solid State Ionics 2002, 152-153: 125-129.
[50] ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties[J]. Chem. Soc. Rev. 2013, 43(1): 185-124.
[51] JUNG S C, KIM H-J, KIM J-H, et al. Atomic-level understanding toward a high-capacity and high-power silicon oxide (SiO) material[J]. J. Phys. Chem. C 2016, 120(2): 886-892.
[52] PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-ion batteries[J]. J. Power Sources 2019, 413: 20-28.
[53] LEE J K, YOON W Y, KIM B K. Kinetics of reaction products of silicon monoxide with controlled amount of Li-ion insertion at various current densities for Li-ion batteries[J]. J. Electrochem Soc. 2014, 161(6): A927-A933.
[54] MORIMOTO H, TATSUMISAGO M, MINAMI T. Anode properties of amorphous 50SiO⋅50SnO powders synthesized by mechanical milling[J]. Electrochem. Solid-State Lett. 2001, 4(2): A16.
[55] COURTNEY I A, DAHN J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J. Electrochem. Soc. 1997, 144(6): 2045-2052.
[56] ABDELHAMID A A, YU Y, YANG J, et al. Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes[J]. Adv. Mater. 2017, 29(32): 1701427.
[57] CARBONE L, GREENBAUM S G, HASSOUN J. Lithium sulfur and lithium oxygen batteries: New frontiers of sustainable energy storage[J]. Sustainable Energy Fuels 2017, 1(2): 228-247.
[58] QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nat. Commun. 2015, 6(1): 6362.
[59] LIN D, ZHAO J, SUN J, et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix[J]. Proc. Natl. Acad. Sci. U. S. A. 2017, 114(18): 4613-4618.
[60] ZHAO H, DENG N, YAN J, et al. A review on anode for lithium-sulfur batteries: Progress and prospects[J]. Chem. Eng. J. 2018, 347: 343-365.
[61] SEONG I W, KIM K T, YOON W Y. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell[J]. J. Power Sources 2009, 189(1): 511-514.
[62] SEONG I W, YOON W Y. Electrochemical behavior of a silicon monoxide and Li-powder double layer anode cell[J]. J. Power Sources 2010, 195(18): 6143-6147.
[63] CHEN D, ZHANG W, LUO K, et al. Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization[J]. Energy Environ. Sci. 2021, 14(4): 2244-2262.
[64] MORITA T, TAKAMI N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J]. J. Electrochem. Soc. 2006, 153(2): A425.
[65] KIM J-H, SOHN H-J, KIM H, et al. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries[J]. J. Power Sources 2007, 170(2): 456-459.
[66] HWA Y, PARK C-M, SOHN H-J. Modified SiO as a high performance anode for Li-ion batteries[J]. J. Power Sources 2013, 222: 129-134.
[67] GAO X, LU W, XU J. Unlocking multiphysics design guidelines on Si/C composite nanostructures for high-energy-density and robust lithium-ion battery anode[J]. Nano Energy 2021, 81(C): 105591.
[68] LEE J-I, PARK S. High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching[J]. Nano Energy 2013, 2(1): 146-152.
[69] PARK D, KIM H-S, SEO H, et al. Porous SiO composite tailored by scalable mechanochemical oxidation of Si for Li-ion anodes[J]. Electrochim. Acta 2020, 357: 136862.
[70] SHI L, PANG C, CHEN S, et al. Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes[J]. Nano Lett. 2017, 17(6): 3681-3687.
[71] HAN J, CHEN G, YAN T, et al. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery[J]. Chem. Eng. J. 2018, 347: 273-279.
[72] KOMABA S, SHIMOMURA K, YABUUCHI N, et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. J. Phys. Chem. C 2011, 115(27): 13487-13495.
[73] FENG X, YANG J, YU X, et al. Low-cost SiO-based anode using green binders for lithium ion batteries[J]. J. Solid State Electrochem. 2013, 17(9): 2461-2469.
[74] ZHAO H, WANG Z, LU P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design[J]. Nano Lett. 2014, 14(11): 6704-6710.
[75] WU S, YANG Y, LIU C, et al. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries[J]. ACS Energy Lett. 2021, 6(1): 290-297.
[76] ZHAO J, LU Z, WANG H, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-Ion batteries[J]. J. Am. Chem. Soc. 2015, 137(26): 8372-8375.
[77] ZHAO J, LU Z, LIU N, et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nat. Commun. 2014, 5(1): 5088.
[78] KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Lett. 2016, 16(1): 282-288.
[79] MENG Q, LI G, YUE J, et al. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy[J]. ACS Appl. Mater. Interfaces 2019, 11(35): 32062-32068.
[80] FU R, WU Y, FAN C, et al. Reactivating Li2O with nano-Sn to achieve ultrahigh initial coulombic efficiency SiO anodes for Li-ion batteries[J]. ChemSusChem 2019, 12(14): 3377-3382.
[81] YAN M-Y, LI G, ZHANG J, et al. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high energy density lithium-ion batteries[J]. ACS Appl. Mater. Interfaces 2020, 12(24): 27202-27209.
[82] JANG J, KANG I, CHOI J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew. Chem. Int. Ed. 2020, 59(34): 14473-14480.
[83] HUANG B, HUANG T, WAN L, et al. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder[J]. ACS Sustain. Chem. Eng. 2021, 9(2): 648-657.
[84] A. DE CASTRO I, CHRIMES A F, ZAVABETI A, et al. A gallium-based magnetocaloric liquid metal ferrofluid[J]. Nano Lett. 2017, 17(12): 7831-7838.
[85] ZAVABETI A, OU J Z, CAREY B J, et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides[J]. Science 2017, 358(6361): 332-335.
[86] DAENEKE T, ATKIN P, ORRELL-TRIGG R, et al. Wafer-scale synthesis of semiconducting SnO monolayers from interfacial oxide layers of metallic liquid Tin[J]. ACS Nano 2017, 11(11): 10974-10983.
[87] DESHPANDE R D, LI J, CHENG Y-T, et al. Liquid metal alloys as self-healing negative electrodes for lithium ion batteries[J]. J. Electrochem. Soc. 2011, 158(8): A845.
[88] HAPUARACHCHI S N S, WASALATHILAKE K C, SIRIWARDENA D P, et al. Interfacial engineering with liquid metal for Si-based hybrid electrodes in lithium-ion batteries[J]. ACS Appl. Energy. Mater. 2020, 3(6): 5147-5152.
[89] WU Y, HUANG L, HUANG X, et al. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life[J]. Energy Environ. Sci. 2017, 10(8): 1854-1861.
[90] HAN B, YANG Y, SHI X, et al. Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery[J]. Nano Energy 2018, 50: 359-366.
[91] HAN B, XU D, CHI S S, et al. 500 Wh kg−1 class Li metal battery enabled by a self-organized core-shell composite anode[J]. Adv. Mater. 2020, 32(42): 2004793.
[92] HU L, WANG L, DING Y, et al. Manipulation of liquid metals on a graphite surface[J]. Adv. Mater. 2016, 28(41): 9210-9217.
[93] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature 2001, 409(6822): 794-797.

所在学位评定分委会
创新创业学院
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342770
专题创新创业学院
推荐引用方式
GB/T 7714
唐权铭. 液态金属三维导电网络连通的SiOx负极研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032555-唐权铭-创新创业学院.(4489KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[唐权铭]的文章
百度学术
百度学术中相似的文章
[唐权铭]的文章
必应学术
必应学术中相似的文章
[唐权铭]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。