[1] FORD D, EASTON D F, STRATTON M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium [J]. Am J Hum Genet, 1998, 62(3): 676-89.
[2] NOGUEIRA JORGE N A, WAJNBERG G, FERREIRA C G, et al. snoRNA and piRNA expression levels modified by tobacco use in women with lung adenocarcinoma [J]. PLoS One, 2017, 12(8): e0183410.
[3] YAO J T, ZHAO S H, LIU Q P, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value [J]. Pathol Res Pract, 2017, 213(5): 453-6.
[4] BIOMARKERS DEFINITIONS WORKING G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework [J]. Clin Pharmacol Ther, 2001, 69(3): 89-95.
[5] SCHADT E E. Molecular networks as sensors and drivers of common human diseases [J]. Nature, 2009, 461(7261): 218-23.
[6] CHUANG H Y, LEE E, LIU Y T, et al. Network-based classification of breast cancer metastasis [J]. Mol Syst Biol, 2007, 3: 140.
[7] CUI W, QIAN Y, ZHOU X, et al. Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data [J]. BMC Genomics, 2015, 16 Suppl 7: S3.
[8] CHEN L, WU J. Systems biology for complex diseases [J]. J Mol Cell Biol, 2012, 4(3): 125-6.
[9] JIN G, ZHOU X, WANG H, et al. The knowledge-integrated network biomarkers discovery for major adverse cardiac events [J]. J Proteome Res, 2008, 7(9): 4013-21.
[10] CHEN L, LIU R, LIU Z P, et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers [J]. Sci Rep, 2012, 2: 342.
[11] LI M, ZENG T, LIU R, et al. Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis [J]. Brief Bioinform, 2014, 15(2): 229-43.
[12] PITOT H C, DRAGAN Y P. Facts and theories concerning the mechanisms of carcinogenesis [J]. FASEB J, 1991, 5(9): 2280-6.
[13] VESSELINOVITCH S D, MIHAILOVICH N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse [J]. Cancer Res, 1983, 43(9): 4253-9.
[14] HACKER H J, MTIRO H, BANNASCH P, et al. Histochemical profile of mouse hepatocellular adenomas and carcinomas induced by a single dose of diethylnitrosamine [J]. Cancer Res, 1991, 51(7): 1952-8.
[15] BANNASCH P, ENZMANN H, KLIMEK F, et al. Significance of sequential cellular changes inside and outside foci of altered hepatocytes during hepatocarcinogenesis [J]. Toxicol Pathol, 1989, 17(4 Pt 1): 617-28; discussion 29.
[16] LEE J S, CHU I S, MIKAELYAN A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer [J]. Nat Genet, 2004, 36(12): 1306-11.
[17] RIGNALL B, BRAEUNING A, BUCHMANN A, et al. Tumor formation in liver of conditional beta-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen [J]. Carcinogenesis, 2011, 32(1): 52-7.
[18] DAPITO D H, MENCIN A, GWAK G Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4 [J]. Cancer Cell, 2012, 21(4): 504-16.
[19] SCHNEIDER C, TEUFEL A, YEVSA T, et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer [J]. Gut, 2012, 61(12): 1733-43.
[20] SANTOS N P, OLIVEIRA P A, ARANTES-RODRIGUES R, et al. Cytokeratin 7/19 expression in N-diethylnitrosamine-induced mouse hepatocellular lesions: implications for histogenesis [J]. Int J Exp Pathol, 2014, 95(3): 191-8.
[21] DING Y F, WU Z H, WEI Y J, et al. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine [J]. J Cancer Res Clin Oncol, 2017, 143(5): 821-34.
[22] MCGLYNN K A, HUNTER K, LEVOYER T, et al. Susceptibility to aflatoxin B1-related primary hepatocellular carcinoma in mice and humans [J]. Cancer Res, 2003, 63(15): 4594-601.
[23] CHAPPELL G, KUTANZI K, UEHARA T, et al. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice [J]. Int J Cancer, 2014, 134(12): 2778-88.
[24] THUY LE T T, MORITA T, YOSHIDA K, et al. Promotion of liver and lung tumorigenesis in DEN-treated cytoglobin-deficient mice [J]. Am J Pathol, 2011, 179(2): 1050-60.
[25] IATROPOULOS M J, JEFFREY A M, SCHLUTER G, et al. Bioassay of mannitol and caprolactam and assessment of response to diethylnitrosamine in heterozygous p53-deficient (+/-) and wild type (+/+) mice [J]. Arch Toxicol, 2001, 75(1): 52-8.
[26] DRINKWATER N R, GINSLER J J. Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice [J]. Carcinogenesis, 1986, 7(10): 1701-7.
[27] MARONPOT R R. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains [J]. J Toxicol Pathol, 2009, 22(1): 11-33.
[28] MOON M, NAKAI K. Stable feature selection based on the ensemble L 1 -norm support vector machine for biomarker discovery [J]. BMC Genomics, 2016, 17(Suppl 13): 1026.
[29] ZUBOVIC L, PIAZZA S, TEBALDI T, et al. The altered transcriptome of pediatric myelodysplastic syndrome revealed by RNA sequencing [J]. J Hematol Oncol, 2020, 13(1): 135.
[30] OSHLACK A, ROBINSON M D, YOUNG M D. From RNA-seq reads to differential expression results [J]. Genome Biol, 2010, 11(12): 220.
[31] GOVINDARAJAN M, WOHLMUTH C, WAAS M, et al. High-throughput approaches for precision medicine in high-grade serous ovarian cancer [J]. J Hematol Oncol, 2020, 13(1): 134.
[32] WU H, LI X, LI H. Gene fusions and chimeric RNAs, and their implications in cancer [J]. Genes Dis, 2019, 6(4): 385-90.
[33] MERCER T R, GERHARDT D J, DINGER M E, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome [J]. Nat Biotechnol, 2011, 30(1): 99-104.
[34] REESER J W, MARTIN D, MIYA J, et al. Validation of a Targeted RNA Sequencing Assay for Kinase Fusion Detection in Solid Tumors [J]. J Mol Diagn, 2017, 19(5): 682-96.
[35] MERCER T R, CLARK M B, CRAWFORD J, et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq [J]. Nat Protoc, 2014, 9(5): 989-1009.
[36] LIU R, CHEN P, AIHARA K, et al. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers [J]. Sci Rep, 2015, 5: 17501.
[37] VEERARAGHAVAN J, MA J, HU Y, et al. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications [J]. Breast Cancer Res Treat, 2016, 158(2): 219-32.
[38] SUN Y M, CHEN Y Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application [J]. J Hematol Oncol, 2020, 13(1): 109.
[39] ZHOU X, ZHAN L, HUANG K, et al. The functions and clinical significance of circRNAs in hematological malignancies [J]. J Hematol Oncol, 2020, 13(1): 138.
[40] ADESIYUN A A, JAGUN A G, TEKDEK L B. Coxiella burnetii antibodies in some Nigerian dairy cows and their suckling calves [J]. Int J Zoonoses, 1984, 11(2): 155-60.
[41] XU H, WANG C, SONG H, et al. RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers [J]. Mol Cancer, 2019, 18(1): 8.
[42] ALISOLTANI A, FALLAHI H, SHIRAN B, et al. RNA-seq SSRs and small RNA-seq SSRs: new approaches in cancer biomarker discovery [J]. Gene, 2015, 560(1): 34-43.
[43] ZHOU F F, HUANG R, JIANG J, et al. Correlated non-nuclear COX2 and low HER2 expression confers a good prognosis in colorectal cancer [J]. Saudi J Gastroenterol, 2018, 24(5): 301-6.
[44] CHEN R H, DU Y, HAN P, et al. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma [J]. Oncotarget, 2016, 7(13): 16910-22.
[45] LIU G, HOU G, LI L, et al. Potential diagnostic and prognostic marker dimethylglycine dehydrogenase (DMGDH) suppresses hepatocellular carcinoma metastasis in vitro and in vivo [J]. Oncotarget, 2016, 7(22): 32607-16.
[46] MEI J, HAO L, LIU X, et al. Comprehensive analysis of peroxiredoxins expression profiles and prognostic values in breast cancer [J]. Biomark Res, 2019, 7: 16.
[47] SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions [J]. Nature, 2009, 461(7260): 53-9.
[48] SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions [J]. Science, 2012, 338(6105): 344-8.
[49] SHI J, AIHARA K, CHEN L. Dynamics-based data science in biology [J]. Natl Sci Rev, 2021, 8(5): nwab029.
[50] DAKOS V, SCHEFFER M, VAN NES E H, et al. Slowing down as an early warning signal for abrupt climate change [J]. Proc Natl Acad Sci U S A, 2008, 105(38): 14308-12.
[51] LIU X, CHANG X, LENG S, et al. Detection for disease tipping points by landscape dynamic network biomarkers [J]. National Science Review, 2019, 6(4): 775-85.
[52] WU X, CHEN L, WANG X. Network biomarkers, interaction networks and dynamical network biomarkers in respiratory diseases [J]. Clin Transl Med, 2014, 3: 16.
[53] TORSHIZI A D, PETZOLD L. Sparse Pathway-Induced Dynamic Network Biomarker Discovery for Early Warning Signal Detection in Complex Diseases [J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15(3): 1028-34.
[54] GAO J, WANG K, DING T, et al. Forecasting influenza A pandemic outbreak using protein dynamical network biomarkers [J]. BMC Syst Biol, 2017, 11(Suppl 4): 85.
[55] LIU X, LIU R, ZHAO X M, et al. Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers [J]. BMC Med Genomics, 2013, 6 Suppl 2: S8.
[56] JIANG Z, LU L, LIU Y, et al. SMAD7 and SERPINE1 as novel dynamic network biomarkers detect and regulate the tipping point of TGF-beta induced EMT [J]. Science Bulletin, 2020.
[57] RAY S. A quick review of machine learning algorithms; proceedings of the 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), F, 2019 [C]. IEEE.
[58] KOPPAD S H, KUMAR A. Application of big data analytics in healthcare system to predict COPD; proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), F, 2016 [C]. IEEE.
[59] MIR A, DHAGE S N. Diabetes disease prediction using machine learning on big data of healthcare; proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), F, 2018 [C]. IEEE.
[60] BUTTI M D, CHANFREAU H, MARTINEZ D, et al. BioPlat: a software for human cancer biomarker discovery [J]. Bioinformatics, 2014, 30(12): 1782-4.
[61] TREMOULET A H, DUTKOWSKI J, SATO Y, et al. Novel data-mining approach identifies biomarkers for diagnosis of Kawasaki disease [J]. Pediatr Res, 2015, 78(5): 547-53.
[62] HU Y, HASE T, LI H P, et al. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data [J]. BMC Genomics, 2016, 17(Suppl 13): 1025.
[63] YUAN X, CHEN J, LIN Y, et al. Network Biomarkers Constructed from Gene Expression and Protein-Protein Interaction Data for Accurate Prediction of Leukemia [J]. J Cancer, 2017, 8(2): 278-86.
[64] LIU R, GUO C X, ZHOU H H. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen [J]. Cancer Biol Ther, 2015, 16(2): 317-24.
[65] MIN W, LIU J, ZHANG S. Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery [J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15(3): 944-53.
[66] CUN Y, FROHLICH H. Network and data integration for biomarker signature discovery via network smoothed T-statistics [J]. PLoS One, 2013, 8(9): e73074.
[67] SANCHEZ-LENGELING B, WEI J N, LEE B K, et al. Machine learning for scent: Learning generalizable perceptual representations of small molecules [J]. arXiv preprint arXiv:191010685, 2019.
[68] LI J, ZHANG S, LIU T, et al. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction [J]. Bioinformatics, 2020, 36(8): 2538-46.
[69] XUAN P, PAN S, ZHANG T, et al. Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations [J]. Cells, 2019, 8(9).
[70] LI Y, KUWAHARA H, YANG P, et al. PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks [J]. bioRxiv, 2019: 532226.
[71] HAN P, YANG P, ZHAO P, et al. GCN-MF: Disease-gene association identification by graph convolutional networks and matrix factorization; proceedings of the Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, F, 2019 [C].
[72] WANG C, GUO J, ZHAO N, et al. A Cancer Survival Prediction Method Based on Graph Convolutional Network [J]. IEEE Trans Nanobioscience, 2020, 19(1): 117-26.
[73] SIRACUSANO G, TAGLIAMONTE M, BUONAGURO L, et al. Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside [J]. Vaccines (Basel), 2020, 8(1).
[74] HU B, LIN J Z, YANG X B, et al. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review [J]. Cell Prolif, 2020, 53(3): e12772.
[75] LOU J, ZHANG L, LV S, et al. Biomarkers for Hepatocellular Carcinoma [J]. Biomark Cancer, 2017, 9: 1-9.
[76] MARONPOT R R, FOX T, MALARKEY D E, et al. Mutations in the ras proto-oncogene: clues to etiology and molecular pathogenesis of mouse liver tumors [J]. Toxicology, 1995, 101(3): 125-56.
[77] HE L, TIAN D A, LI P Y, et al. Mouse models of liver cancer: Progress and recommendations [J]. Oncotarget, 2015, 6(27): 23306-22.
[78] DELGADO E, OKABE H, PREZIOSI M, et al. Complete response of Ctnnb1-mutated tumours to beta-catenin suppression by locked nucleic acid antisense in a mouse hepatocarcinogenesis model [J]. J Hepatol, 2015, 62(2): 380-7.
[79] CHEN X, YAMAMOTO M, FUJII K, et al. Differential reactivation of fetal/neonatal genes in mouse liver tumors induced in cirrhotic and non-cirrhotic conditions [J]. Cancer Sci, 2015, 106(8): 972-81.
[80] BUCHMANN A, KARCIER Z, SCHMID B, et al. Differential selection for B-raf and Ha-ras mutated liver tumors in mice with high and low susceptibility to hepatocarcinogenesis [J]. Mutat Res, 2008, 638(1-2): 66-74.
[81] REIBERGER T, CHEN Y, RAMJIAWAN R R, et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis [J]. Nat Protoc, 2015, 10(8): 1264-74.
[82] PYLAYEVA-GUPTA Y, GRABOCKA E, BAR-SAGI D. RAS oncogenes: weaving a tumorigenic web [J]. Nat Rev Cancer, 2011, 11(11): 761-74.
[83] JAWORSKI M, BUCHMANN A, BAUER P, et al. B-raf and Ha-ras mutations in chemically induced mouse liver tumors [J]. Oncogene, 2005, 24(7): 1290-5.
[84] NOHARA K, OKAMURA K, SUZUKI T, et al. Augmenting effects of gestational arsenite exposure of C3H mice on the hepatic tumors of the F(2) male offspring via the F(1) male offspring [J]. J Appl Toxicol, 2016, 36(1): 105-12.
[85] RAO K V, VESSELINOVITCH S D. Age- and sex-associated diethylnitrosamine dealkylation activity of the mouse liver and hepatocarcinogenesis [J]. Cancer Res, 1973, 33(7): 1625-7.
[86] VERNA L, WHYSNER J, WILLIAMS G M. N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation [J]. Pharmacol Ther, 1996, 71(1-2): 57-81.
[87] NAKATANI T, ROY G, FUJIMOTO N, et al. Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprorelin [J]. Jpn J Cancer Res, 2001, 92(3): 249-56.
[88] LI Z, TUTEJA G, SCHUG J, et al. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer [J]. Cell, 2012, 148(1-2): 72-83.
[89] NAUGLER W E, SAKURAI T, KIM S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production [J]. Science, 2007, 317(5834): 121-4.
[90] SANDER L E, TRAUTWEIN C, LIEDTKE C. Is interleukin-6 a gender-specific risk factor for liver cancer? [J]. Hepatology, 2007, 46(4): 1304-5.
[91] ODAGIRI Y, ADACHI S, KATAYAMA H, et al. Detection of the cytogenetic effect of inhaled aerosols by the micronucleus test [J]. Mutat Res, 1986, 170(1-2): 79-83.
[92] BUTTERWORTH B E, TEMPLIN M V, CONSTAN A A, et al. Long-term mutagenicity studies with chloroform and dimethylnitrosamine in female lacI transgenic B6C3F1 mice [J]. Environ Mol Mutagen, 1998, 31(3): 248-56.
[93] HIRAMOTO K, OHKAWA T, KIKUGAWA K. Release of nitric oxide together with carbon-centered radicals from N-nitrosamines by ultraviolet light irradiation [J]. Free Radic Res, 2001, 35(6): 803-13.
[94] MINAKATA D, COSCARELLI E. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations [J]. Molecules, 2018, 23(3).
[95] KIP F T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks [J]. 2016.
[96] YANG C S, TU Y Y, KOOP D R, et al. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes [J]. Cancer Res, 1985, 45(3): 1140-5.
[97] KWON Y J, SHIN S, CHUN Y J. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes [J]. Arch Pharm Res, 2021, 44(1): 63-83.
[98] LEVINE A J, OREN M. The first 30 years of p53: growing ever more complex [J]. Nat Rev Cancer, 2009, 9(10): 749-58.
[99] YAN H X, WU H P, ZHANG H L, et al. DNA damage-induced sustained p53 activation contributes to inflammation-associated hepatocarcinogenesis in rats [J]. Oncogene, 2013, 32(38): 4565-71.
[100] UEHARA T, AINSLIE G R, KUTANZI K, et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis [J]. Toxicol Sci, 2013, 132(1): 53-63.
[101] PUISIEUX A, BRABLETZ T, CARAMEL J. Oncogenic roles of EMT-inducing transcription factors [J]. Nat Cell Biol, 2014, 16(6): 488-94.
[102] TIWARI N, GHELDOF A, TATARI M, et al. EMT as the ultimate survival mechanism of cancer cells [J]. Semin Cancer Biol, 2012, 22(3): 194-207.
[103] RAMSKOLD D, WANG E T, BURGE C B, et al. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data [J]. PLoS Comput Biol, 2009, 5(12): e1000598.
[104] DIWAN B A, RICE J M, OHSHIMA M, et al. Interstrain differences in susceptibility to liver carcinogenesis initiated by N-nitrosodiethylamine and its promotion by phenobarbital in C57BL/6NCr, C3H/HeNCrMTV- and DBA/2NCr mice [J]. Carcinogenesis, 1986, 7(2): 215-20.
[105] YANG C S, YOO J S, ISHIZAKI H, et al. Cytochrome P450IIE1: roles in nitrosamine metabolism and mechanisms of regulation [J]. Drug Metab Rev, 1990, 22(2-3): 147-59.
[106] SHALINI S, NIKOLIC A, WILSON C H, et al. Caspase-2 deficiency accelerates chemically induced liver cancer in mice [J]. Cell Death Differ, 2016, 23(10): 1727-36.
[107] HSU S H, WANG B, KUTAY H, et al. Hepatic loss of miR-122 predisposes mice to hepatobiliary cyst and hepatocellular carcinoma upon diethylnitrosamine exposure [J]. Am J Pathol, 2013, 183(6): 1719-30.
[108] EL-ASHMAWY N E, EL-BAHRAWY H A, SHAMLOULA M M, et al. Biochemical/metabolic changes associated with hepatocellular carcinoma development in mice [J]. Tumour Biol, 2014, 35(6): 5459-66.
修改评论