中文版 | English
题名

基于动态网络标记物和深度学习的小鼠肝癌潜伏期预警

其他题名
EARLY WARNING OF LIVER CANCER LATENCY IN MICE BASED ON DYNAMIC NETWORK BIOMARKERS AND DEEP LEARNING
姓名
姓名拼音
HAN Yukun
学号
11930132
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
王冠宇
导师单位
生物系
论文答辩日期
2022-04-28
论文提交日期
2022-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

人类战胜复杂疾病的关键在于早发现早治疗,常规的生化指标无法用于疾病潜伏期的检测,因为潜伏期的异常不是分子表达量的改变,而是分子间相关性的改变。为获得有关人体内机制和疾病的信息,动物模型的建立是研究肝癌发病生物学过程的一个极为重要的实验方法和手段,有助于更方便、更有效地认识人类疾病的发生、发展规律和研究防治措施。在本课题中我们构建了一个高效的肝癌诱导动物模型,可以在病因学(病因机制)和表型(体征和症状)方面与人类肝癌发病机制相当,使得以肝癌为代表的复杂的人类疾病在一个简化的系统中得到更好的理解。动物模型转录组学数据通过动态网络标记物 (DNB) 计算分子间相关性的突然改变,实现了潜伏期有效预警。在此基础上我们引入图卷积神经网络 (GCN) 深度学习算法,初步构建了一个简单的 DNB - GCN 复合预警系统。实现了对所构建的肝癌动物模型的疾病状态的判断,为后期优化 DNB - GCN 模型的预警能力(更准确更及时)、丰富其预报内容(计算出被检者在被测时处于潜伏期各阶段的概率)提供前期基础。本课题通过构建动物模型和样本高通量 DNB - GCN 理论实践,有助于后期个性化精准医疗的实现,具有一定的科学意义和社会价值。

其他摘要

The key to human victory over complex diseases lies in early detection and early treatment, and conventional biochemical indicators cannot be used to detect the incubation period of the disease, because the abnormality of the incubation period is not a change in molecular expression, but a change in the correlation between molecules. In order to obtain information about the mechanisms and diseases in the human body, the establishment of animal models is an extremely important experimental method and means for studying the biological process of liver cancer pathogenesis, which is conducive to more convenient and effective understanding of the occurrence, development and prevention and control measures of human diseases. In this project, we have constructed a highly efficient animal model of liver cancer induction, which can be comparable to the pathogenesis of human liver cancer in terms of etiology (etiological mechanism) and phenotype (signs and symptoms), so that complex human diseases represented by liver cancer can be better understood in a simplified system. The transcriptomics data of animal models were used to calculate sudden changes in intermolecular correlations through dynamic network biomarkers (DNBs) to achieve effective early warning of incubation periods. Base on that we introduce the graph convolutional neural network (GCN) deep learning algorithm to initially build a simple DNB - GCN composite early warning system. The judgment of the disease state of the constructed animal model of liver cancer is realized, which provides an early basis for optimizing the early warning ability of the DNB - GCN model in the later stage (more accurate and timely) and enriching its forecast content (calculating the probability that the subject is in each stage of the incubation period at the time of detection). Through the theoretical practice of constructing animal models and high-throughput DNB - GCN of samples, this project contributes to the realization of personalized precision medicine in the later stage, which has certain scientific significance and social value.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] FORD D, EASTON D F, STRATTON M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium [J]. Am J Hum Genet, 1998, 62(3): 676-89.
[2] NOGUEIRA JORGE N A, WAJNBERG G, FERREIRA C G, et al. snoRNA and piRNA expression levels modified by tobacco use in women with lung adenocarcinoma [J]. PLoS One, 2017, 12(8): e0183410.
[3] YAO J T, ZHAO S H, LIU Q P, et al. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value [J]. Pathol Res Pract, 2017, 213(5): 453-6.
[4] BIOMARKERS DEFINITIONS WORKING G. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework [J]. Clin Pharmacol Ther, 2001, 69(3): 89-95.
[5] SCHADT E E. Molecular networks as sensors and drivers of common human diseases [J]. Nature, 2009, 461(7261): 218-23.
[6] CHUANG H Y, LEE E, LIU Y T, et al. Network-based classification of breast cancer metastasis [J]. Mol Syst Biol, 2007, 3: 140.
[7] CUI W, QIAN Y, ZHOU X, et al. Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data [J]. BMC Genomics, 2015, 16 Suppl 7: S3.
[8] CHEN L, WU J. Systems biology for complex diseases [J]. J Mol Cell Biol, 2012, 4(3): 125-6.
[9] JIN G, ZHOU X, WANG H, et al. The knowledge-integrated network biomarkers discovery for major adverse cardiac events [J]. J Proteome Res, 2008, 7(9): 4013-21.
[10] CHEN L, LIU R, LIU Z P, et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers [J]. Sci Rep, 2012, 2: 342.
[11] LI M, ZENG T, LIU R, et al. Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis [J]. Brief Bioinform, 2014, 15(2): 229-43.
[12] PITOT H C, DRAGAN Y P. Facts and theories concerning the mechanisms of carcinogenesis [J]. FASEB J, 1991, 5(9): 2280-6.
[13] VESSELINOVITCH S D, MIHAILOVICH N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse [J]. Cancer Res, 1983, 43(9): 4253-9.
[14] HACKER H J, MTIRO H, BANNASCH P, et al. Histochemical profile of mouse hepatocellular adenomas and carcinomas induced by a single dose of diethylnitrosamine [J]. Cancer Res, 1991, 51(7): 1952-8.
[15] BANNASCH P, ENZMANN H, KLIMEK F, et al. Significance of sequential cellular changes inside and outside foci of altered hepatocytes during hepatocarcinogenesis [J]. Toxicol Pathol, 1989, 17(4 Pt 1): 617-28; discussion 29.
[16] LEE J S, CHU I S, MIKAELYAN A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer [J]. Nat Genet, 2004, 36(12): 1306-11.
[17] RIGNALL B, BRAEUNING A, BUCHMANN A, et al. Tumor formation in liver of conditional beta-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen [J]. Carcinogenesis, 2011, 32(1): 52-7.
[18] DAPITO D H, MENCIN A, GWAK G Y, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4 [J]. Cancer Cell, 2012, 21(4): 504-16.
[19] SCHNEIDER C, TEUFEL A, YEVSA T, et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer [J]. Gut, 2012, 61(12): 1733-43.
[20] SANTOS N P, OLIVEIRA P A, ARANTES-RODRIGUES R, et al. Cytokeratin 7/19 expression in N-diethylnitrosamine-induced mouse hepatocellular lesions: implications for histogenesis [J]. Int J Exp Pathol, 2014, 95(3): 191-8.
[21] DING Y F, WU Z H, WEI Y J, et al. Hepatic inflammation-fibrosis-cancer axis in the rat hepatocellular carcinoma induced by diethylnitrosamine [J]. J Cancer Res Clin Oncol, 2017, 143(5): 821-34.
[22] MCGLYNN K A, HUNTER K, LEVOYER T, et al. Susceptibility to aflatoxin B1-related primary hepatocellular carcinoma in mice and humans [J]. Cancer Res, 2003, 63(15): 4594-601.
[23] CHAPPELL G, KUTANZI K, UEHARA T, et al. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice [J]. Int J Cancer, 2014, 134(12): 2778-88.
[24] THUY LE T T, MORITA T, YOSHIDA K, et al. Promotion of liver and lung tumorigenesis in DEN-treated cytoglobin-deficient mice [J]. Am J Pathol, 2011, 179(2): 1050-60.
[25] IATROPOULOS M J, JEFFREY A M, SCHLUTER G, et al. Bioassay of mannitol and caprolactam and assessment of response to diethylnitrosamine in heterozygous p53-deficient (+/-) and wild type (+/+) mice [J]. Arch Toxicol, 2001, 75(1): 52-8.
[26] DRINKWATER N R, GINSLER J J. Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice [J]. Carcinogenesis, 1986, 7(10): 1701-7.
[27] MARONPOT R R. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains [J]. J Toxicol Pathol, 2009, 22(1): 11-33.
[28] MOON M, NAKAI K. Stable feature selection based on the ensemble L 1 -norm support vector machine for biomarker discovery [J]. BMC Genomics, 2016, 17(Suppl 13): 1026.
[29] ZUBOVIC L, PIAZZA S, TEBALDI T, et al. The altered transcriptome of pediatric myelodysplastic syndrome revealed by RNA sequencing [J]. J Hematol Oncol, 2020, 13(1): 135.
[30] OSHLACK A, ROBINSON M D, YOUNG M D. From RNA-seq reads to differential expression results [J]. Genome Biol, 2010, 11(12): 220.
[31] GOVINDARAJAN M, WOHLMUTH C, WAAS M, et al. High-throughput approaches for precision medicine in high-grade serous ovarian cancer [J]. J Hematol Oncol, 2020, 13(1): 134.
[32] WU H, LI X, LI H. Gene fusions and chimeric RNAs, and their implications in cancer [J]. Genes Dis, 2019, 6(4): 385-90.
[33] MERCER T R, GERHARDT D J, DINGER M E, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome [J]. Nat Biotechnol, 2011, 30(1): 99-104.
[34] REESER J W, MARTIN D, MIYA J, et al. Validation of a Targeted RNA Sequencing Assay for Kinase Fusion Detection in Solid Tumors [J]. J Mol Diagn, 2017, 19(5): 682-96.
[35] MERCER T R, CLARK M B, CRAWFORD J, et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq [J]. Nat Protoc, 2014, 9(5): 989-1009.
[36] LIU R, CHEN P, AIHARA K, et al. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers [J]. Sci Rep, 2015, 5: 17501.
[37] VEERARAGHAVAN J, MA J, HU Y, et al. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications [J]. Breast Cancer Res Treat, 2016, 158(2): 219-32.
[38] SUN Y M, CHEN Y Q. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application [J]. J Hematol Oncol, 2020, 13(1): 109.
[39] ZHOU X, ZHAN L, HUANG K, et al. The functions and clinical significance of circRNAs in hematological malignancies [J]. J Hematol Oncol, 2020, 13(1): 138.
[40] ADESIYUN A A, JAGUN A G, TEKDEK L B. Coxiella burnetii antibodies in some Nigerian dairy cows and their suckling calves [J]. Int J Zoonoses, 1984, 11(2): 155-60.
[41] XU H, WANG C, SONG H, et al. RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers [J]. Mol Cancer, 2019, 18(1): 8.
[42] ALISOLTANI A, FALLAHI H, SHIRAN B, et al. RNA-seq SSRs and small RNA-seq SSRs: new approaches in cancer biomarker discovery [J]. Gene, 2015, 560(1): 34-43.
[43] ZHOU F F, HUANG R, JIANG J, et al. Correlated non-nuclear COX2 and low HER2 expression confers a good prognosis in colorectal cancer [J]. Saudi J Gastroenterol, 2018, 24(5): 301-6.
[44] CHEN R H, DU Y, HAN P, et al. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma [J]. Oncotarget, 2016, 7(13): 16910-22.
[45] LIU G, HOU G, LI L, et al. Potential diagnostic and prognostic marker dimethylglycine dehydrogenase (DMGDH) suppresses hepatocellular carcinoma metastasis in vitro and in vivo [J]. Oncotarget, 2016, 7(22): 32607-16.
[46] MEI J, HAO L, LIU X, et al. Comprehensive analysis of peroxiredoxins expression profiles and prognostic values in breast cancer [J]. Biomark Res, 2019, 7: 16.
[47] SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions [J]. Nature, 2009, 461(7260): 53-9.
[48] SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions [J]. Science, 2012, 338(6105): 344-8.
[49] SHI J, AIHARA K, CHEN L. Dynamics-based data science in biology [J]. Natl Sci Rev, 2021, 8(5): nwab029.
[50] DAKOS V, SCHEFFER M, VAN NES E H, et al. Slowing down as an early warning signal for abrupt climate change [J]. Proc Natl Acad Sci U S A, 2008, 105(38): 14308-12.
[51] LIU X, CHANG X, LENG S, et al. Detection for disease tipping points by landscape dynamic network biomarkers [J]. National Science Review, 2019, 6(4): 775-85.
[52] WU X, CHEN L, WANG X. Network biomarkers, interaction networks and dynamical network biomarkers in respiratory diseases [J]. Clin Transl Med, 2014, 3: 16.
[53] TORSHIZI A D, PETZOLD L. Sparse Pathway-Induced Dynamic Network Biomarker Discovery for Early Warning Signal Detection in Complex Diseases [J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15(3): 1028-34.
[54] GAO J, WANG K, DING T, et al. Forecasting influenza A pandemic outbreak using protein dynamical network biomarkers [J]. BMC Syst Biol, 2017, 11(Suppl 4): 85.
[55] LIU X, LIU R, ZHAO X M, et al. Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers [J]. BMC Med Genomics, 2013, 6 Suppl 2: S8.
[56] JIANG Z, LU L, LIU Y, et al. SMAD7 and SERPINE1 as novel dynamic network biomarkers detect and regulate the tipping point of TGF-beta induced EMT [J]. Science Bulletin, 2020.
[57] RAY S. A quick review of machine learning algorithms; proceedings of the 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon), F, 2019 [C]. IEEE.
[58] KOPPAD S H, KUMAR A. Application of big data analytics in healthcare system to predict COPD; proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), F, 2016 [C]. IEEE.
[59] MIR A, DHAGE S N. Diabetes disease prediction using machine learning on big data of healthcare; proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), F, 2018 [C]. IEEE.
[60] BUTTI M D, CHANFREAU H, MARTINEZ D, et al. BioPlat: a software for human cancer biomarker discovery [J]. Bioinformatics, 2014, 30(12): 1782-4.
[61] TREMOULET A H, DUTKOWSKI J, SATO Y, et al. Novel data-mining approach identifies biomarkers for diagnosis of Kawasaki disease [J]. Pediatr Res, 2015, 78(5): 547-53.
[62] HU Y, HASE T, LI H P, et al. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data [J]. BMC Genomics, 2016, 17(Suppl 13): 1025.
[63] YUAN X, CHEN J, LIN Y, et al. Network Biomarkers Constructed from Gene Expression and Protein-Protein Interaction Data for Accurate Prediction of Leukemia [J]. J Cancer, 2017, 8(2): 278-86.
[64] LIU R, GUO C X, ZHOU H H. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen [J]. Cancer Biol Ther, 2015, 16(2): 317-24.
[65] MIN W, LIU J, ZHANG S. Network-Regularized Sparse Logistic Regression Models for Clinical Risk Prediction and Biomarker Discovery [J]. IEEE/ACM Trans Comput Biol Bioinform, 2018, 15(3): 944-53.
[66] CUN Y, FROHLICH H. Network and data integration for biomarker signature discovery via network smoothed T-statistics [J]. PLoS One, 2013, 8(9): e73074.
[67] SANCHEZ-LENGELING B, WEI J N, LEE B K, et al. Machine learning for scent: Learning generalizable perceptual representations of small molecules [J]. arXiv preprint arXiv:191010685, 2019.
[68] LI J, ZHANG S, LIU T, et al. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction [J]. Bioinformatics, 2020, 36(8): 2538-46.
[69] XUAN P, PAN S, ZHANG T, et al. Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations [J]. Cells, 2019, 8(9).
[70] LI Y, KUWAHARA H, YANG P, et al. PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks [J]. bioRxiv, 2019: 532226.
[71] HAN P, YANG P, ZHAO P, et al. GCN-MF: Disease-gene association identification by graph convolutional networks and matrix factorization; proceedings of the Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, F, 2019 [C].
[72] WANG C, GUO J, ZHAO N, et al. A Cancer Survival Prediction Method Based on Graph Convolutional Network [J]. IEEE Trans Nanobioscience, 2020, 19(1): 117-26.
[73] SIRACUSANO G, TAGLIAMONTE M, BUONAGURO L, et al. Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside [J]. Vaccines (Basel), 2020, 8(1).
[74] HU B, LIN J Z, YANG X B, et al. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review [J]. Cell Prolif, 2020, 53(3): e12772.
[75] LOU J, ZHANG L, LV S, et al. Biomarkers for Hepatocellular Carcinoma [J]. Biomark Cancer, 2017, 9: 1-9.
[76] MARONPOT R R, FOX T, MALARKEY D E, et al. Mutations in the ras proto-oncogene: clues to etiology and molecular pathogenesis of mouse liver tumors [J]. Toxicology, 1995, 101(3): 125-56.
[77] HE L, TIAN D A, LI P Y, et al. Mouse models of liver cancer: Progress and recommendations [J]. Oncotarget, 2015, 6(27): 23306-22.
[78] DELGADO E, OKABE H, PREZIOSI M, et al. Complete response of Ctnnb1-mutated tumours to beta-catenin suppression by locked nucleic acid antisense in a mouse hepatocarcinogenesis model [J]. J Hepatol, 2015, 62(2): 380-7.
[79] CHEN X, YAMAMOTO M, FUJII K, et al. Differential reactivation of fetal/neonatal genes in mouse liver tumors induced in cirrhotic and non-cirrhotic conditions [J]. Cancer Sci, 2015, 106(8): 972-81.
[80] BUCHMANN A, KARCIER Z, SCHMID B, et al. Differential selection for B-raf and Ha-ras mutated liver tumors in mice with high and low susceptibility to hepatocarcinogenesis [J]. Mutat Res, 2008, 638(1-2): 66-74.
[81] REIBERGER T, CHEN Y, RAMJIAWAN R R, et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis [J]. Nat Protoc, 2015, 10(8): 1264-74.
[82] PYLAYEVA-GUPTA Y, GRABOCKA E, BAR-SAGI D. RAS oncogenes: weaving a tumorigenic web [J]. Nat Rev Cancer, 2011, 11(11): 761-74.
[83] JAWORSKI M, BUCHMANN A, BAUER P, et al. B-raf and Ha-ras mutations in chemically induced mouse liver tumors [J]. Oncogene, 2005, 24(7): 1290-5.
[84] NOHARA K, OKAMURA K, SUZUKI T, et al. Augmenting effects of gestational arsenite exposure of C3H mice on the hepatic tumors of the F(2) male offspring via the F(1) male offspring [J]. J Appl Toxicol, 2016, 36(1): 105-12.
[85] RAO K V, VESSELINOVITCH S D. Age- and sex-associated diethylnitrosamine dealkylation activity of the mouse liver and hepatocarcinogenesis [J]. Cancer Res, 1973, 33(7): 1625-7.
[86] VERNA L, WHYSNER J, WILLIAMS G M. N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation [J]. Pharmacol Ther, 1996, 71(1-2): 57-81.
[87] NAKATANI T, ROY G, FUJIMOTO N, et al. Sex hormone dependency of diethylnitrosamine-induced liver tumors in mice and chemoprevention by leuprorelin [J]. Jpn J Cancer Res, 2001, 92(3): 249-56.
[88] LI Z, TUTEJA G, SCHUG J, et al. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer [J]. Cell, 2012, 148(1-2): 72-83.
[89] NAUGLER W E, SAKURAI T, KIM S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production [J]. Science, 2007, 317(5834): 121-4.
[90] SANDER L E, TRAUTWEIN C, LIEDTKE C. Is interleukin-6 a gender-specific risk factor for liver cancer? [J]. Hepatology, 2007, 46(4): 1304-5.
[91] ODAGIRI Y, ADACHI S, KATAYAMA H, et al. Detection of the cytogenetic effect of inhaled aerosols by the micronucleus test [J]. Mutat Res, 1986, 170(1-2): 79-83.
[92] BUTTERWORTH B E, TEMPLIN M V, CONSTAN A A, et al. Long-term mutagenicity studies with chloroform and dimethylnitrosamine in female lacI transgenic B6C3F1 mice [J]. Environ Mol Mutagen, 1998, 31(3): 248-56.
[93] HIRAMOTO K, OHKAWA T, KIKUGAWA K. Release of nitric oxide together with carbon-centered radicals from N-nitrosamines by ultraviolet light irradiation [J]. Free Radic Res, 2001, 35(6): 803-13.
[94] MINAKATA D, COSCARELLI E. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations [J]. Molecules, 2018, 23(3).
[95] KIP F T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks [J]. 2016.
[96] YANG C S, TU Y Y, KOOP D R, et al. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes [J]. Cancer Res, 1985, 45(3): 1140-5.
[97] KWON Y J, SHIN S, CHUN Y J. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes [J]. Arch Pharm Res, 2021, 44(1): 63-83.
[98] LEVINE A J, OREN M. The first 30 years of p53: growing ever more complex [J]. Nat Rev Cancer, 2009, 9(10): 749-58.
[99] YAN H X, WU H P, ZHANG H L, et al. DNA damage-induced sustained p53 activation contributes to inflammation-associated hepatocarcinogenesis in rats [J]. Oncogene, 2013, 32(38): 4565-71.
[100] UEHARA T, AINSLIE G R, KUTANZI K, et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis [J]. Toxicol Sci, 2013, 132(1): 53-63.
[101] PUISIEUX A, BRABLETZ T, CARAMEL J. Oncogenic roles of EMT-inducing transcription factors [J]. Nat Cell Biol, 2014, 16(6): 488-94.
[102] TIWARI N, GHELDOF A, TATARI M, et al. EMT as the ultimate survival mechanism of cancer cells [J]. Semin Cancer Biol, 2012, 22(3): 194-207.
[103] RAMSKOLD D, WANG E T, BURGE C B, et al. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data [J]. PLoS Comput Biol, 2009, 5(12): e1000598.
[104] DIWAN B A, RICE J M, OHSHIMA M, et al. Interstrain differences in susceptibility to liver carcinogenesis initiated by N-nitrosodiethylamine and its promotion by phenobarbital in C57BL/6NCr, C3H/HeNCrMTV- and DBA/2NCr mice [J]. Carcinogenesis, 1986, 7(2): 215-20.
[105] YANG C S, YOO J S, ISHIZAKI H, et al. Cytochrome P450IIE1: roles in nitrosamine metabolism and mechanisms of regulation [J]. Drug Metab Rev, 1990, 22(2-3): 147-59.
[106] SHALINI S, NIKOLIC A, WILSON C H, et al. Caspase-2 deficiency accelerates chemically induced liver cancer in mice [J]. Cell Death Differ, 2016, 23(10): 1727-36.
[107] HSU S H, WANG B, KUTAY H, et al. Hepatic loss of miR-122 predisposes mice to hepatobiliary cyst and hepatocellular carcinoma upon diethylnitrosamine exposure [J]. Am J Pathol, 2013, 183(6): 1719-30.
[108] EL-ASHMAWY N E, EL-BAHRAWY H A, SHAMLOULA M M, et al. Biochemical/metabolic changes associated with hepatocellular carcinoma development in mice [J]. Tumour Biol, 2014, 35(6): 5459-66.

所在学位评定分委会
生物系
国内图书分类号
R73-3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342771
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
韩瑜坤. 基于动态网络标记物和深度学习的小鼠肝癌潜伏期预警[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930132-韩瑜坤-生物系.pdf(4400KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[韩瑜坤]的文章
百度学术
百度学术中相似的文章
[韩瑜坤]的文章
必应学术
必应学术中相似的文章
[韩瑜坤]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。