[1] 王苏振.基于深度学习的手势识别技术研究[D].杭州:浙江大学,2019.
[2] Hsien-Ting Chang, Jen-Yuan Chang. Sensor Glove Based on Novel Inertial Sensor Fusion Control Algorithm for 3-D Real-Time Hand Gestures Measurements[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1):658-666.
[3] Wang Y T, Ma H P. Real-Time Continuous Gesture Recognition with Wireless Wearable IMU Sensors[C]//2018 IEEE 20th International Conference on e -Health Networking, Applications and Services (Healthcom). IEEE, 2018.
[4] Jian W , Lu S , Jafari R . A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(5):1281-1290.
[5] Lederman S J, Klatzky R L. Extracting object properties through haptic exploration[J]. Acta Psychol, 1993, 84(1):29-40.
[6] Wen F, Sun Z, He T, et al. Machine learning glove using self‐powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications[J]. Advanced Science, 2020, 7(14): 2000261.
[7] Zhu M, Sun Z, Zhang Z, et al. Haptic-feedback smart glove as a creative human machine interface (HMI) for virtual/augmented reality applications[J]. Science Advances, 2020, 6(19): eaaz8693.
[8] Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571 -578.
[9] Yuan Y, Liu Y, Barner K. Tactile gesture recognition for people with disabilities[C]//Proceedings.(ICASSP'05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. IEEE, 2005, 5: v/461-v/464 Vol. 5.
[10] Huang J , Yang X , Yu J, et al. A Universal and Arbitrary Tactile Interactive System Based on Self-powered Optical Communication[J]. Nano Energy, 2019, 69:104419.
[11] Freeman E, Brewster S, Lantz V. Towards in-air gesture control of household appliances with limited displays[C]//IFIP Conference on Human-Computer Interaction. Springer, Cham, 2015: 611-615.
[12] Fruchard B, Lecolinet E, Chapuis O. Side-Crossing Menus: Enabling Large Sets of Gestures for Small Surfaces[J]. Proceedings of the ACM on Human-Computer Interaction, 2020, 4(ISS): 1-19.
[13] Pusch A, Noël F. Augmented reality for operator training on industrial workplaces-Comparing the Microsoft hololens vs. small and big screen tactile devices[C]//IFIP International Conference on Product Lifecycle Management. Springer, Cham, 2019: 3-13.
[14] de Gea Fernández J, Mronga D, Günther M, et al. Multimodal sensor-based wholebody control for human–robot collaboration in industrial settings[J]. Robotics and Autonomous Systems, 2017, 94: 102-119.
[15] 刘宇昕.智能传感器的应用与发展趋势展望[J].数码设计(下),2019, 000(002):206.
[16] Lipomi D J, Vosgueritchian M, Tee B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12): 788-792.
[17] Wang X, Dong L, Zhang H, et al. Recent progress in electronic skin[J]. Advanced Science, 2015, 2(10): 1500169.
[18] Yang J C, Mun J, Kwon S Y, et al. Electronic skin: recent progress and future prospects for skin ‐ attachable devices for health monitoring, robotics, and prosthetics[J]. Advanced Materials, 2019, 31(48): 1904765.
[19] 任 海 兵 , 祝 远 新 , 徐 光 , 等 . 基 于 视 觉 手 势 识 别 的 研 究 — 综 述 [J]. 电子学报,2000,28(2):118-121.
[20] Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement[J]. Advanced Functional Materials, 2016, 26(8): 1178-1187.
[21] Zhu S E, Krishna Ghatkesar M, Zhang C, et al. Graphene based piezoresistive pressure sensor[J]. Applied Physics Letters, 2013, 102(16): 161904.
[22] Sundaram S, Kellnhofer P, Li Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698 -702.
[23] Jiang S, Li L, Xu H, et al. Stretchable e-skin patch for gesture recognition on the back of the hand[J]. IEEE Transactions on Industrial Electronics, 2019, 67(1): 647-657.
[24] Esposito D, Andreozzi E, Gargiulo G D, et al. A piezoresistive array armband with reduced number of sensors for hand gesture recognition[J]. Frontiers in Neurorobotics, 2020: 114.
[25] Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires[J]. Nanoscale, 2014, 6(4): 2345-2352.
[26] Wong R D P, Posner J D, Santos V J. Flexible microfluidic normal force sensor skin for tactile feedback[J]. Sensors and Actuators A: Physical, 2012, 179: 62-69.
[27] Shahmiri F, Dietz P H. Sharc: A geometric technique for multi-bend/shape sensing[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020: 1-12.
[28] Nie B, Li R, Cao J, et al. Flexible transparent iontronic film for interfacial capacitive pressure sensing[J]. Advanced Materials, 2015, 27(39): 6055 -6062.
[29] Nie B, Li R, Brandt J D, et al. Microfluidic tactile sensors for three -dimensional contact force measurements[J]. Lab on a Chip, 2014, 14(22): 4344 -4353.
[30] Li T, Luo H, Qin L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small, 2016, 12(36): 5042-5048.
[31] Nie B, Li R, Brandt J D, et al. Iontronic microdroplet array for flexible ultrasensitive tactile sensing[J]. Lab on a Chip, 2014, 14(6): 1107-1116.
[32] Li R, Nie B, Zhai C, et al. Telemedical wearable sensing platform for management of chronic venous disorder[J]. Annals of Biomedical Engineering, 2016, 44(7): 2282-2291.
[33] 李森.离电柔性压力传感技术及其应用研究[D].安徽:中国科学技术大学,2020.
[34] Zhu Z, Li R, Pan T. EIS: a wearable device for epidermal pressure sensing[C]//2018 IEEE Haptics Symposium (HAPTICS). IEEE, 2018: 1-6.
[35] Park K I, Son J H, Hwang G T, et al. Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16): 2514-2520.
[36] Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring[J]. Nature Communications, 2014, 5(1): 1-10.
[37] Li C, Wu P M, Lee S, et al. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer[J]. Journal of Microelectromechanical Systems, 2008, 17(2): 334-341.
[38] Syu M H, Guan Y J, Lo W C, et al. Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method[J]. Nano Energy, 2020, 76: 105029.
[39] Gao C, Long Z, Zhong T, et al. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film[J]. Journal of Physics D: Applied Physics, 2022, 55(19): 194004.
[40] Yan L, Mi Y, Lu Y, et al. Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition[J]. Nano Energy, 2022, 96: 107135.
[41] Zhao H, O’Brien K, Li S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics, 2016, 1(1): eaai7529.
[42] Huang J, Zhou W, Li H, et al. Attention-based 3D-CNNs for large-vocabulary sign language recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(9): 2822-2832.
[43] Min Y, Zhang Y, Chai X, et al. An efficient pointlstm for point clouds based gesture recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Visio n and Pattern Recognition. 2020: 5761-5770.
[44] Molchanov P, Yang X, Gupta S, et al. Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 4207-4215.
[45] Rodolà E, Cosmo L, Litany O, et al. SHREC'17: Deformable shape retrieval with missing parts[C]//10th Eurographics Workshop on 3D Object Retrieval, 3DOR 2017. Eurographics Association, 2017: 85-94.
[46] Wang H, Chai X, Chen X. A novel sign language recognition framework using hierarchical Grassmann covariance matrix[J]. IEEE Transactions on Multimedia, 2019, 21(11): 2806-2814.
[47] Huang X, Wang Q, Zang S, et al. Tracing the motion of finger joints for gesture recognition via sewing RGO-coated fibers onto a textile glove[J]. IEEE Sensors Journal, 2019, 19(20): 9504-9511.
[48] Liu G Y, Kong D Y, Hu S G, et al. Smart electronic skin having gesture recognition function by LSTM neural network[J]. Applied Physics Letters, 2018, 113(8): 084102.
[49] Yuan G, Liu X, Yan Q, et al. Hand gesture recognition using deep feature fusion network based on wearable sensors[J]. IEEE Sensors Journal, 2020, 21(1): 539 -547.
[50] Garcia-Garcia A, Zapata-Impata B S, Orts-Escolano S, et al. Tactilegcn: A graph convolutional network for predicting grasp stability with tactile sensors[C]//2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019: 1 -8.
[51] Gao R, Taunyazov T, Lin Z, et al. Supervised autoencoder joint learning on heterogeneous tactile sensory data: Improving material classification performance[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10907-10913.
[52] Ryu S C, Quek Z F, Renaud P, et al. An optical actuation system and curvature sensor for a MR-compatible active needle[C]//2012 IEEE International Conference on Robotics and Automation. IEEE, 2012: 1589-1594.
[53] Dobrzynski M K, Halasz I, Pericet-Camara R, et al. Contactless deflection sensing of concave and convex shapes assisted by soft mirrors[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 4810-4815.
[54] Polygerinos P, Ataollahi A, Schaeffter T, et al. MRI-compatible intensity-modulated force sensor for cardiac catheterization procedures[J]. IEEE Transactions on Biomedical Engineering, 2010, 58(3): 721-726.
[55] Polygerinos P, Seneviratne L D, Razavi R, et al. Triaxial catheter-tip force sensor for MRI-guided cardiac procedures[J]. IEEE/ASME Transactions on Mechatronics, 2012, 18(1): 386-396.
[56] Fainman Y, Lee L, Psaltis D, et al. Optofluidics: Fundamentals, Devices, and Applications[M]. McGraw Hill Professional, 2009.
[57] Pegan J D, Ho A Y, Bachman M, et al. Flexible shrink-induced high surface area electrodes for electrochemiluminescent sensing[J]. Lab on a Chip, 2013, 13(21): 4205-4209.
[58] Li Z, Cheng L, Song Q. An ultra-stretchable and highly sensitive photoelectric effect-based strain sensor: implementation and applications[J]. IEEE Sensors Journal, 2020, 21(4): 4365-4376.
[59] Kashi S, Gupta R K, Baum T, et al. Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites[J]. Materials & Design, 2016, 109: 68-78.
[60] Danilov V, Dölle C, Ott M, et al. Plasma treatment of polydimethylsiloxane thin films studied by infrared reflection absorption spectroscopy[J]. The 29th International Conference on Phenomena in Ionized Gases, 2009.
[61] Wu C Y, Liao W H, Tung Y C. Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems[J]. Lab on a Chip, 2011, 11(10): 1740-1746.
[62] Liu T, Sen P, Kim C J. Characterization of nontoxic liquid -metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2011, 21(2): 443-450.
[63] Polygerinos P, Ataollahi A, Schaeffter T, et al. MRI-compatible intensity-modulated force sensor for cardiac catheterization procedures[J]. IEEE Transactions on biomedical engineering, 2010, 58(3): 721-726.
[64] Ozioko O, Dahiya R. Smart tactile gloves for haptic interaction, communication, and rehabilitation[J]. Advanced Intelligent Systems, 2022, 4(2): 2100091.
[65] Al-Handarish Y, Omisore O M, Chen J, et al. A Hybrid Microstructure Piezoresistive Sensor with Machine Learning Approach for Gesture Recognition[J]. Applied Sciences, 2021, 11(16): 7264.
[66] Yan L, Mi Y, Lu Y, et al. Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition[J]. Nano Energy, 2022, 96: 107135.
[67] Pugeault N, Bowden R. Spelling it out: Real-time ASL fingerspelling recognition[C]//2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011: 1114-1119.
[68] Van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11).
[69] Le L, Patterson A, White M. Supervised autoencoders: Improving generalization performance with unsupervised regularizers[J]. Advances in Neural Information Processing Systems, 2018, 31.
修改评论