[1] 杨超, 杨澜, 谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展[J]. 空气动力学学报, 2018, 36(6): 1009-1018.
[2] DERKEVORKIAN A, MASRI S F, ALVARENGA J, et al. Strain-based deformation shapeestimation algorithm for control and monitoring applications[J]. AIAA journal, 2013, 51(9): 2231-2240.
[3] SHAEFFER D K. MEMS inertial sensors: A tutorial overview[J]. IEEE Communications Magazine, 2013, 51(4): 100-109.
[4] PAHADIA A. GPS/INS integration aided with gyroscope-free IMU for pedestrian applications [J]. Department of Geomatics Engineering, University of Calgary, 2010.
[5] SHANG P, GAO Y, SONG Z. Low-cost quadrotor attitude solution based on improved complementary filtering[C]//2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2018: 1037-1041.
[6] MAHONY R, HAMEL T, PFLIMLIN J M. Nonlinear complementary filters on the special orthogonal group[J]. IEEE Transactions on automatic control, 2008, 53(5): 1203-1218.
[7] WEN X, LIU C, HUANG Z, et al. A first-order differential data processing method for accuracy improvement of complementary filtering in micro-UAV attitude estimation[J]. Sensors, 2019, 19(6): 1340.
[8] 张少雷. 基于微惯性航姿参考系统的AGV 导引研究[D]. 华中科技大学, 2017.
[9] 杨雁宇. 基于IMU/GPS 的微型航姿参考系统设计[D]. 太原: 中北大学, 2018.
[10] GENG X, WANG X, LUO G, et al. Carrier Dynamic Attitude Estimation Algorithm Based on MEMS Inertial Sensor[C]//2019 IEEE THE 2nd INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS for AI, HEALTHCARE, AND ROBOTICS (NSENS). IEEE: 103- 107.
[11] LECCADITO M, BAKKER T M, NIU R, et al. A Kalman filter based attitude heading reference system using a low cost inertial measurement unit[C]//AIAA Guidance, Navigation, and Control Conference. 2015: 0604.
[12] KIM J, LEE S. A vehicular positioning with GPS/IMU using adaptive control of filter noise covariance[J]. Ict Express, 2016, 2(1): 41-46.
[13] ZHAO L, WANG Q Y. Design of an attitude and heading reference system based on distributed filtering for small UAV[J]. Mathematical Problems in Engineering, 2013, 2013.
[14] 张健. 一种基于多传感器融合的姿态测量系统设计与研究[D]. 北京邮电大学, 2017.
[15] 时贵敏. 基于MEMS 传感技术的航姿系统算法研究[D]. 哈尔滨工程大学, 2014.
[16] 底双. 基于多传感器组合的低成本航姿系统设计与实现[D]. 哈尔滨工程大学, 2020.
[17] KO W L, RICHARDS W L, TRAN V T. Displacement theories for in-flight deformed shape predictions of aerospace structures[R]. 2007.
[18] LIU T, BURNER A W, JONES T W, et al. Photogrammetric techniques for aerospace applications[J]. Progress in Aerospace Sciences, 2012, 54: 1-58.
[19] 邱志成, 张祥通. 基于视觉的柔性结构振动测量及其控制[J]. 振动. 测试与诊断, 2012, 32 (1): 11-16.
[20] 周永兴. 飞行试验机翼变形测量的一种方法[J]. 测控技术, 2013, 32(4): 15-17.
[21] KURITA M, KOIKE S, NAKAKITA K, et al. In-Flight Wing Deformation Measurement[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013: 967.
[22] YIN D, WEI Z, WANG Z. Approach to insect wing shape and deformation field measurement [J]. bioRxiv, 2017: 119230.
[23] 季红侠. 飞机大部件对接中的自动测量技术研究与系统开发[D][D]. 南京: 南京航空航天大学, 2012.
[24] 李巧真, 李刚, 韩钦泽. 电阻应变片的实验与应用[J]. 实验室研究与探索, 2011, 30(4):134-137.
[25] GHERLONE M, CERRACCHIO P, MATTONE M, et al. An inverse finite element method for beam shape sensing: theoretical framework and experimental validation[J]. Smart Materials and Structures, 2014, 23(4): 045027.
[26] GHERLONE M, CERRACCHIO P, MATTONE M, et al. Shape sensing of 3D frame structures using an inverse finite element method[J]. International Journal of Solids and Structures, 2012, 49(22): 3100-3112.
[27] 尚柏林, 宋笔锋, 万方义. 光纤传感器在飞行器结构健康监测中的应用[J]. 光纤与电缆及其应用技术, 2008(3): 7-10.
[28] DVORAK M, RUZICKA M, KABRT M. Design of Embedded FBG Sensor System for Ultralight Aircraft Wing Monitoring[J]. Structural Health Monitoring 2015, 2015.
[29] MARTINS B L, KOSMATKA J B. Detecting damage in a UAV composite wing spar using distributed fiber optic strain sensors[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015: 0447.
[30] NISHIYAMA M, IGAWA H, KASAI T, et al. Distributed strain measurement based on longgauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring[J]. Applied Optics, 2015, 54(5): 1191-1197.
[31] NICOLAS M J, SULLIVAN R W, RICHARDS W L. Fiber Bragg grating strains to obtain structural response of a carbon composite wing[C]//Smart Materials, Adaptive Structures and Intelligent Systems: volume 56048. American Society of Mechanical Engineers, 2013: V002T05A012.
[32] SUN G, LI H, DONG M, et al. Optical fiber shape sensing of polyimide skin for a flexible morphing wing[J]. Applied optics, 2017, 56(33): 9325-9332.
[33] 王寅, 朱振宇, 陈志平, 等. 一种适于柔性无人机机翼形变的测试方法[J]. 计算机测量与控制, 2012, 20(11): 2894-2896.
[34] 吴慧峰. 基于光纤光栅传感技术的机翼形变测量方法研究与分析[J]. 桂林航天工业学院学报, 2017, 22(4): 359-364.
[35] 张新华. 基于光纤光栅的结构形状传感技术研究[D]. 南京航空航天大学, 2018.
[36] FOSS G, HAUGSE E. Using modal test results to develop strain to displacement transformations [C]//Proceedings of the 13th international modal analysis conference: volume 2460. 1995: 112.
[37] BOGERT P, HAUGSE E, GEHRKI R. Structural shape identification from experimental strains using a modal transformation technique[C]//44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003: 1626.
[38] KIM H I, KANG L H, HAN J H. Shape estimation with distributed fiber Bragg grating sensors for rotating structures[J]. Smart Materials and Structures, 2011, 20(3): 035011.
[39] LI L, ZHONG B S, LI W Q, et al. Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(4): 463-478.
[40] 段嘉晟. 机翼一体化天线变形重构与传感器布局优化[D]. 西安电子科技大学, 2020.
[41] NICOLAS M J. Structural analysis and testing of a carbon-composite wing using fiber Bragg gratings[D]. Mississippi State University, 2013.
[42] 闫美佳. 基于光纤光栅的结构变形监测方法研究[D][D]. 南京航空航天大学, 2015.
[43] 何超. 基于光纤光栅的飞行器结构健康监测技术研究[D]. 南京: 南京航空航天大学, 2016.
[44] 冯荻. 基于光纤光栅应变传感的结构变形重构技术研究[D]. 大连理工大学, 2020.
[45] TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells[J]. Computer methods in applied mechanics and engineering, 2005, 194(2-5): 327-339.
[46] NISHIO M, MIZUTANI T, TAKEDA N. Structural shape reconstruction with consideration of the reliability of distributed strain data from a Brillouin-scattering-based optical fiber sensor[J]. Smart Materials and Structures, 2010, 19(3): 035011.
[47] ALIOLI M, MASARATI P, MORANDINI M, et al. Membrane shape and load reconstruction from measurements using inverse finite element analysis[J]. AIAA Journal, 2017, 55(1): 297-308.
[48] 潘兴琳. 基于光纤光栅的结构变形测量系统研究[D]. 西安电子科技大学, 2018.
[49] 张科, 袁慎芳, 任元强, 等. 基于逆向有限元法的变形机翼鱼骨的变形重构[J]. 航空学报,2020, 41(8): 250-260.
[50] 魏传达. 基于应变信息的飞机机翼变形测量及形变重构理论研究[D]. 西安电子科技大学,2015.
修改评论