[1] MAVERYRAUD L, MOUREY L. Protein X-ray crystallography and drug discovery[J]. Molecules, 2020, 25(5):1030.
[2] SHI Y. A glimpse of structural biology through X-Ray crystallography[J]. Cell, 2014, 159(5):995-1014.
[3] BLOCH F, HANSEN W W, PACKARD M. The nuclear induction experiment[J]. Phys, 1946, Rev.70:474-485
[4] PURCELL E M, TORREY H C, POUND R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Phys, 1946, Rev.69:37-38
[5] MARION D. An introduction to biological NMR spectroscopy[J]. Mol Cell Proteomics, 2013, 12(11):3006-25.
[6] MITTERMAIER A K, KAY L E. Observing biological dynamics at atomic resolution using NMR[J]. Trends Biochem. Sci, 2009, 34:601-611
[7] PELLECCHIA M, BERTINI I, COWBURN D, et al. Perspectives on NMR in drug discovery: a technique comes of age[J]. Nat Rev Drug Discov, 2008, 7(9):738-45.
[8] DUNKER A K, SILMAN I, UVERSKY V N, et al. Function and structure of inherently disordered proteins[J]. Curr. Opin. Struct. Biol, 2008, 18:756-764
[9] SEKHAR A, KAY L E. An NMR view of protein dynamics in health and disease[J]. Annual Review of Biophysics, 2019, 48(1):297-319.
[10] SPENCE J C. Lawrence Bragg, microdiffraction and X-ray lasers[J]. Acta Crystallogr A, 2013, 69(Pt 1):25-33.
[11] LIU ZC, XU R, DONG YH. Phase retrieval in protein crystallography[J]. Acta Crystallogr A, 2012, 68(Pt 2):256-65.
[12] MORGAN A J, AYYER K, BARTY A, et al. Ab initio phasing of the diffraction of crystals with translational disorder[J]. Acta Crystallogr A Found Adv, 2019, 75(Pt 1):25-40.
[13] HAUPTMAN H. Phasing methods for protein crystallography[J]. Curr Opin Struct Biol, 1997, 7(5):672-80.
[14] NEUTZE R, WOUTS R, VANDER S D, et al. Potential for biomolecular imaging with femtosecond X-ray pulses[J]. Nature, 2000, 406(6797):752-7.
[15] BERGFORS T, KLEYWEGT G J, JONES T A. Crystallization and preliminary X-ray analysis of recombinant bovine cellular retinoic acid-binding protein[J]. Acta Crystallogr D Biol Crystallogr, 1994, 50(Pt 4):370-4.
[16] DESSAU M A, Modis Y. Protein crystallization for X-ray crystallography[J]. J Vis Exp, 2011, (47):2285.
[17] UJWAL R, BOWIE J U. Crystallizing membrane proteins using lipidic bicelles[J]. Methods, 2011, 55(4):337-41.
[18] CAFFREY M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes[J]. Acta Crystallogr F Struct Biol Commun, 2015, 71(Pt 1):3-18.
[19] ESMAILI M, OVERDUIN M. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers[J]. Biochim Biophys Acta Biomembr, 2018, 1860(2):257-63.
[20] PARMAR M, RAWSON S, SCARFF CA, et al. Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure[J]. Biochim Biophys Acta Biomembr, 2018, 1860(2):378-83.
[21] SIMON KS, POLLOCK NL, LEE SC. Membrane protein nanoparticles: the shape of things to come[J]. Biochem Soc T rans, 2018, 46(6):1495-504.
[22] JONES N. Crystallography: Atomic secrets[J]. Nature, 2014, 505(7485):602-603.
[23] ALLEN J P. Recent innovations in membrane-protein structural biology[J]. F1000Res, 2019, 8:F1000 Faculty Rev-211.
[24] DEROSIER D J, KLUG A. Reconstruction of three dimensional structures from electron micrographs[J]. Nature, 1968, 217(5124):130-4.
[25] TAYLOR K A, GLAESER R M. Electron diffraction of frozen, hydrated protein crystals[J]. Science, 1974, 186(4168):1036-7.
[26] DUBOCHET J, LEPAULT J, FREEMAN R, et al. Electron microscopy of frozen water and aqueous solutions[J]. J Microsc, 1982, 128:219-237.
[27] FRANK J. Approaches to large-scale structures[J]. Curr Opin Struct Biol, 1995, 5(2):194-201.
[28] SIGWORTH F J. A maximum-likelihood approach to single-particle image refinement[J]. J Struct Biol, 1998, 122(3):328-39.
[29] BRILOT A F, CHEN J Z, CHENG A, et al. Beam-induced motion of vitrified specimen on holey carbon film[J]. J Struct Biol, 2012, 177(3):630-7.
[30] BARTESAGHI A, MERK A, BANERJEE S, et al. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor[J]. Science, 2015, 348(6239):1147-51.
[31] BAI X C, FERNANDEZ I S, MCMULLANG, et al. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles[J]. Elife, 2013, 2:e00461.
[32] BAI X C, YAN C, YANG G, et al. An atomic structure of human γ-secretase[J]. Nature, 2015, 525(7568):212-217.
[33] FERNANDEZ I S, BAI X C, HUSSAIN T, et al. Molecular architecture of a eukaryotic translational initiation complex[J]. Science, 2013, 342(6160):1240585.
[34] HITE R K, YUAN P, LI Z, et al. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+channel[J]. Nature, 2015, 527(7577):198-203.
[35] VONDER E J, MULLER M, LEHMAN W, et al. Structure of the F-actin-tropomyosin complex[J]. Nature, 2015, 519(7541):114-7.
[36] ZHANG R, ALUSHIN G M, BROWN A, et al. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins[J]. Cell, 2015, 162(4):849-59.
[37] HE Y, FANG J, TAATJES D J, et al. Structural visualization of key steps in human transcription initiation[J]. Nature, 2013, 495(7442):481-6.
[38] DESGEORGES A, DHOTE V, KUHN L, et al. Structure of mammalian eIF3 in the context of the 43S preinitiation complex[J]. Nature, 2015, 525(7570):491-5.
[39] JOMAA A, BOEHRINGER D, LEIBUNDGUT M,et al. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon[J]. Nature Communications, 2016:7(1).
[40] ZHANG X, YAN C, ZHAN X, et al. Structure of the human activated spliceosome in three conformational states[J]. Cell Research, 2018, 28(3):307-322.
[41] DU J, LU W, WU S, et al. Glycine receptor mechanism elucidated by electron cryo-microscopy[J]. Nature, 2015, 526(7572):224-229.
[42] THOMPSON R F, WALKER M, SIEBERT C A, et al. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology[J]. Methods, 2016, 100:3-15.
[43] YEATES T O, AGDANOWSKI M P, LIU Y. Development of imaging scaffolds for cryo-electron microscopy[J]. Curr Opin Struct Biol. 2020, 60:142-149.
[44] ROSIER D J D, KLUG A. Reconstruction of Three Dimensional Structures from Electron Micrographs[J]. Nature, 1968, 217(5124):130-134.
[45] HENDERSON R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules[J]. Quarterly Reviews of Biophysics, 1995, 28(2):171-193.
[46] GLAESER R M, TYPKE D, TIEMEIJER P C, et al. Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM[J]. Journal of Structural Biology, 2011, 174(1):1-10.
[47] FAN X, WANG J, ZHANG X, et al. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution[J]. Nature Communications, 2019, 10(1).
[48] HERZIK M A, WU M, LANDER G C. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM[J]. Nature Communications, 2019, 10(1).
[49] YAO Q, WEAVER S J, MOCK J-Y, et al. Fusion of DARPin to aldolase enables visualization of small protein by cryoEM[J]. Structure, 2019, 27(7):1148-1155.
[50] WU S, AVILASAKAR A, KIM J, et al. Fabs enable single particle cryoEM studies of small proteins[J]. Structure, 2012, 20(4):582-92.
[51] KRATZ P A, BOTTCHER B, Nassal M.Native display of complete foreign protein domains on the surface of hepatitis B virus capsids[J]. Proc Natl Acad Sci USA, 1999, 96(5):1915-20.
[52] COSCIA F, ESTROZI LF, HANS F, et al. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein[J]. Sci Rep, 2016, 6:30909.
[53] LIU Y, GONEN S, GONEN T, et al. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system[J]. Proc Natl Acad Sci USA, 2018, 115(13):3362-3367.
[54] PADILLA J, COLOVOS C, YEATES T O, et al. Using symmetry to design self assembling protein cages, layers, crystals, and filaments[J]. PNAS, 2001, 98(5):2217-2221.
[55] WU Y, BATYUK A, HONEGGER A, et al. A Rigidly connected multispecific artificial binders with adjustable geometries[J]. Sci, 2017, Rep 7(1):11217.
[56] MARTIN T G, BHARAT T A, JOERGER A C, et al. Design of a molecular support for cryo-EM structure determination[J]. PNAS, 2016, 113(47):7456-7463.
[57] ZHANG C, CANTARA W, MUSIER-FORSYTH K, et al. Analysis of discrete local variability and structural covariance in macromolecular assemblies using Cryo-EM and focuses classification[J]. Ultramicroscopy, 2019, 203:170-180.
[58] PLUCKTHUN. A Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy[J]. Annu, 2015, Rev.Pharmacol.Toxicol 55:489-511.
[59] LIU Y, HUYNH D T, YEATES T O. A 3.8 Å resolution cryo-EM structure of a small protein bound to an imaging scaffold[J]. Nature Comm, 2019, 10(1):1864.
[60] MATTHIES D, BAE C, TOOMBES G E, et al. Single particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs[J]. Elife, 2018, 5:37558.
[61] MILES A J, JANES R W, WALLACE B A . Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review[J]. Chem Soc Rev, 2021, 50(15):8400-8413.
[62] YOSHIZAWA K, MISHIMA Y, Park S Y, et al. Effect of N-terminal residues on the structural stability of recombinant horse L-chain apoferritin in an acidic environment[J]. Journal of biochemistry, 2007, 142(6):707-713.
修改评论