[1] 刘全波. 基于视觉的无人机自动着陆定位算法[D]. 天津大学, 2016.
[2] 袁俊. 基于无人机平台的目标跟踪和着陆位姿估计[D]. 哈尔滨工业大学, 2020.
[3] Lin Shanggang,Garratt Matthew-A.,Lambert Andrew-J.. Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment[J]. Autonomous Robots, 2016, 41(4): 881-901.
[4] 单一. 基于视觉导航的四旋翼无人机自主着降控制研究[D]. 南京航空航天大学, 2018.
[5] Cabrera-ponce Aldrich-A.,Martinez-carranza Jose. A vision-based approach for autonomous landing[C]//IEEE: IEEE.
[6] Skoczylas Marcin,Walendziuk Wojciech. Multiple Camera Based Real-Time Locating System for Unmanned Air Vehicle[C]//IEEE: IEEE.
[7] 岳文斌. 旋翼无人机自主降落技术研究[D]. 山东大学, 2020.
[8] 康立鹏. 基于视觉导航的小型旋翼无人机目标识别自主降落系统研究[D]. 内蒙古工业大学, 2020.
[9] 贾配洋. 无人机高速移动降落技术研究[D]. 中国科学院大学(中国科学院国家空间科学中心), 2017.
[10] 步青. 无人机视觉智能控制相关技术研究[D]. 浙江工业大学, 2017.
[11] Cabrera-ponce Aldrich-A.,Martinez-carranza Jose. A vision-based approach for autonomous landing[J]. Crossref.
[12] Zhanpeng Gan,Huarong Xu,Yuanrong He, et al. Autonomous Landing Point Retrieval Algorithm for UAVs Based on 3D Environment Perception[C]//2021 Ieee 7th International Conference on Virtual Reality (icvr), 2021: 104-108.
[13] Vishnu R. Desaraju,Nathan Michael,Martin Humenberger, et al. Vision-based landing site evaluation and informed optimal trajectory generation toward autonomous rooftop landing[J]. Autonomous Robots, 2015, 39(3): 445-463.
[14] Michael Warren,Luis Mejias,Xilin Yang, et al. Field and Service Robotics: Results of the 9th International Conference[M]: Springer International Publishing, 2015: 167-181.
[15] Timo Hinzmann,Thomas Stastny,Cesar Cadena, et al. Free LSD: Prior-Free Visual Landing Site Detection for Autonomous Planes[J]. Ieee Robotics and Automation Letters, 2018, 3(3): 2545-2552.
[16] 彭灿兮. 基于视觉的四旋翼无人机无地标着陆方法研究[D]. 湖南科技大学, 2019.
[17] Shen Yufei,Rahman Zia-ur. An Automatic Computer-Aided Detection System for Aircraft Emergency Landing[C]//Infotech@Aerospace 2011, Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011.
[18] Daniel Fitzgerald,Rodney Walker. Classification of Candidate Landing Sites for UAV Forced Landings[C]//Aiaa Guidance, Navigation, and Control Conference and Exhibit, 2005.
[19] Timothy Patterson,Sally McClean,Philip Morrow, et al. Timely autonomous identification of UAV safe landing zones[J]. Image and Vision Computing, 2014, 32(9): 568-578.
[20] Edward Carney,Lina Castano,Huan Xu. Determination of Safe Landing Zones for an Autonomous UAS using Elevation and Population Density Data[C]//Aiaa Scitech 2019 Forum, 2019.
[21] Sebastian Scherer,Lyle Chamberlain,Sanjiv Singh. Online Assessment of Landing Sites[C]//AIAA Infotech@ Aerospace 2010, 2010: 3358.
[22] Hsiu-Wen Cheng,Tsung-Lin Chen,Chung-Hao Tien. Learning-based risk assessment and motion estimation by vision for unmanned aerial vehicle landing in an unvisited area[J]. Journal of Electronic Imaging, 2019, 28(6).
[23] Cesetti A.,Frontoni E.,Mancini A. Autonomous safe landing of a vision guided helicopter[C]//IEEE: IEEE, 2010.
[24] J. P. Matos-Carvalho,Filipe Moutinho,Ana Beatriz Salvado, et al. Static and Dynamic Algorithms for Terrain Classification in UAV Aerial Imagery[J]. Remote Sensing, 2019, 11(21).
[25] Matos-carvalho J.-P.,Moutinho Filipe,Salvado Ana-Beatriz. Static and Dynamic Algorithms for Terrain Classification in UAV Aerial Imagery[J]. Remote Sensing, 11(21): 2501.
[26] Chihiro Kikumoto,Yoh Harimoto,Kazuki Isogaya, et al. Landing Site Detection for UAVs Based on CNNs Classification and Optical Flow from Monocular Camera Images[J]. Journal of Robotics and Mechatronics, 2021, 33(2): 292-300.
[27] 祝思君. 基于深度学习的无人机遥感图像目标识别方法研究[D], 2018.
[28] Lecun Y.,Bottou L.,Bengio Y., Gradient-based learning applied to document recognition[J]. Institute of Electrical and Electronics Engineers (IEEE)(11): 2278-2324.
[29] Alex Krizhevsky,I. Sutskever,G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks[C]//Nips, 2012.
[30] K. Simonyan,A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014.
[31] Forrest and Han Song and Moskewicz Matthew and Ashraf Khalid and Dally William and Keutzer Kurt Iandola. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[J].
[32] A. G. Howard,M. Zhu,B. Chen, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J], 2017.
[33] A. Howard M. Zhu A. Zhmoginov and L. -C. Chen M. Sandler. MobileNetV2: Inverted Residuals and Linear Bottlenecks[C]//2018 Ieee/cvf Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[34] Christian and Wei Liu and Yangqing Jia and Sermanet Pierre and Reed Scott and Anguelov Dragomir and Erhan Dumitru and Vanhoucke Vincent and Rabinovich Andrew Szegedy. Going deeper with convolutions[C]//2015 Ieee Conference on Computer Vision and Pattern Recognition (cvpr), 2015.
[35] Kaiming He,Jian Sun,Xiaoou Tang. Single Image Haze Removal Using Dark Channel Prior[J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
[36] 李永健. 基于机器视觉的四旋冀无人机定点着陆系统设计与实现[D]. 华南理工大学, 2015.
[37] 李宇. 无人机视觉着陆关键技术研究[D], 2012.
[38] R. m. haralick K.-Shanmugam-and-I.-Dinstein. Textural Features for Image Classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3: 610-621.
[39] Wang Zhi,Liu Chaoge,Cui Xiang. EvilModel: Hiding Malware Inside of Neural Network Models[C]//IEEE: IEEE.
[40] Nitish Srivastava,Geoffrey Hinton,Alex Krizhevsky, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(56): 1929-1958.
[41] K. He,X. Zhang,S. Ren, et al. Deep Residual Learning for Image Recognition[J]. Ieee, 2016.
[42] Lowe D.G.. Object recognition from local scale-invariant features[C]//IEEE: IEEE.
[43] Herbert Bay,Andreas Ess,Tinne Tuytelaars, et al. Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
[44] 庄曈. 单目视觉/惯性室内无人机自主导航算法研究[D], 2012.
修改评论