中文版 | English
题名

松潘-甘孜-甜水海造山带伟晶岩成因和锂矿化机制研究

其他题名
RESEARCH ON THE GENESIS OF THE PEGMATITE IN THE SONGPAN-GANZE-TIANSHUIHAI OROGENIC BELT AND LI MINERALIZATION
姓名
姓名拼音
ZHAO Hui
学号
11849579
学位类型
博士
学位专业
083002 环境工程
学科门类/专业学位类别
08 工学
导师
陈斌
导师单位
地球与空间科学系
论文答辩日期
2022-05-16
论文提交日期
2022-06-25
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

作为锂电池的重要原材料,锂被誉为“二十一世纪的绿色能源金属和白色石油”,对世界各国能源结构的调整和“双碳”战略规划的实现发挥着至关重要的作用。然而,我国的锂矿资源主要依靠进口,存在较高的供应风险,因此锂矿资源也是一种重要的战略资源。伟晶岩型锂矿床是锂矿资源的重要来源,勘探寻找新的伟晶岩型锂矿床已成为迫在眉睫的事情,但目前伟晶岩的成因与锂矿化机制还存在较大争议。松潘-甘孜-甜水海造山带中分布着大量的伟晶岩型锂矿床,为探讨这些科学问题提供了良好的条件。

甲基卡锂矿床位于青藏高原东缘的松潘-甘孜造山带,是中国最大的伟晶岩型锂矿床。在该矿区,大量的富锂伟晶岩(年龄为198 ~ 214 Ma)环绕晚三叠世马颈子二云母花岗岩分布。本文对马颈子二云母花岗岩、富锂伟晶岩脉和三叠纪西康群片岩进行了详细的矿物学、岩石学和地球化学研究。相比于毗邻的马颈子二云母花岗岩,甲基卡富锂伟晶岩具有较低的CaOTFe2O3MgOSrBa,以及较高的LiRb。甲基卡富锂伟晶岩的初始Sr同位素(ISr)为0.7212 ~ 0.7249(根据磷灰石获得),明显高于马颈子二云母花岗岩和西康群片岩(0.7128 ~ 0.7163)。全岩Li同位素分析表明,甲基卡富锂伟晶岩、马颈子二云母花岗岩和西康群片岩的δ7Li值分别为+0.3 ~ +1.9‰-0.5 ~ -0.8‰-3.2 ~ +2.4‰。微量元素模拟结果显示,甲基卡富锂伟晶岩不是马颈子二云母花岗岩分离结晶的产物,而是由一个以富锂黏土岩为主(含少量西康群片岩)的源区在高角闪岩相条件下通过低程度(5 ~ 20%)的白云母脱水熔融形成。进一步的Sr同位素模拟表明,甲基卡富锂伟晶岩的源区含有60 ~ 70%的富锂黏土岩。此外,锂同位素模拟结果显示,源区含有的富锂黏土岩越多,伟晶岩的锂同位素值越低。这很好地解释了在该矿区,富锂伟晶岩通常比贫锂伟晶岩富集轻锂同位素(6Li)的特征。据此,本文提出富锂黏土岩的存在是控制甲基卡伟晶岩锂矿化的关键因素。

大红柳滩锂成矿带位于甜水海地体中,蕴含大量的伟晶岩型稀有金属矿床。在该成矿带上,超过7000条伟晶岩脉围绕着大红柳滩花岗岩分布。本文对大红柳滩花岗岩、伟晶岩脉(道班贫锂伟晶岩、阿克沙依贫锂伟晶岩和阿克沙依富锂伟晶岩)和巴颜喀拉山群片岩进行了详细的年代学、矿物学、岩石学和地球化学研究。锆石和锡石的U-Pb定年结果表明,大红柳滩锂成矿带上伟晶岩的形成时代为195 ~ 216 Ma。相比于大红柳滩花岗岩,大红柳滩锂成矿带上的伟晶岩具有较高的SiO2Al2O3,以及较低的TiO2TFe2O3MgO、和CaO。此外,贫锂伟晶岩的RbCsLi的含量与大红柳滩花岗岩相当,甚至略低于花岗岩。贫锂伟晶岩的εNd(t)值为-8.7 ~ -10.0,远低于大红柳滩花岗岩(-7.5 ~ -8.1),但均落入到围岩三叠纪片岩的范围。阿克沙依富锂伟晶岩的初始Sr同位素组成为0.7223 ~ 0.7227(根据磷灰石获得),远高于大红柳滩花岗岩(0.7108 ~ 0.7157)和三叠纪片岩(0.7107 ~ 0.7109)。大红柳滩花岗岩、伟晶岩和三叠纪片岩的全岩δ7Li值分别为+0.8 ~ +5.7‰+0.8 ~ +14.4‰-4.2 ~ +2.8‰。微量元素模拟以及Sr-Nd同位素一致表明,大红柳滩锂成矿带上的伟晶岩不是由大红柳滩花岗岩通过分离结晶形成,而是由变质深熔作用形成。贫锂伟晶岩主要由巴颜喀拉山群(可能含有黏土岩夹层)通过低程度的部分熔融形成,而富锂伟晶岩的源区是以富锂黏土岩为主的混合源区。此外,阿克沙依富锂伟晶岩具有较高的锂同位素值(+10.5 ~ +14.4‰),可能指示它的源区还含有大量的蒸发岩。锂同位模拟结果表明,富锂黏土岩和蒸发岩对大红柳滩锂成矿带伟晶岩的锂矿化发挥着重要的作用。同时,源区差异是造成贫锂伟晶岩和富锂伟晶岩锂同位素分馏的主要原因。通过对甲基卡伟晶岩与大红柳滩锂成矿带伟晶岩的对比研究,本文提出松潘-甘孜-甜水海造山带中的稀有金属伟晶岩具有相似的岩石成因和锂矿化机制。

其他摘要

As an important raw material of lithium battery, lithium is known as the “green energy metal and white oil of the 21st century”, and plays a crucial role in adjusting the energy structure and achieving the carbon peaking and carbon neutrality goals in the world. However, lithium resources in China mainly rely on imports and there is a high supply risk, so lithium resources are also an important strategic resource. Pegmatite-type lithium ore deposit is an important source of lithium. It is urgent to explore and search for new pegmatite-type lithium ore deposit, but the origin of pegmatites and associated Li-mineralization mechanism remain unclear. Abundant pegmatite-type lithium ore deposits are distributed in the Songpan-Ganze-Tianshuihai orogenic belt, which provides us a good opportunity to discuss this issue.

As one of the largest lithium ore deposits in China, the Jiajika pegmatite field is located in the Songpan-Ganze orogenic belt of the eastern Tibetan plateau. The Jiajika Li-rich pegmatites with ages of 198 ~ 214 Ma are spatially associated with the late Triassic Majingzi two-mica granite. In this study, systematic mineralogical, petrological and geochemical investigations on the Majingzi two-mica granite, Li-rich pegmatites and Xikang Group metapelites are performed. The Jiajika Li-rich pegmatites show extremely low CaO, TFe2O3, MgO, Sr and Ba, and high Li and Rb when compared with the adjacent Majingzi two-mica granite, and their initial Sr isotopic ratios (0.7212 ~ 0.7249, obtained from apatite) are significantly higher than those of the granite and the surrounding Xikang Group metapelites (0.7128 ~ 0.7163). Whole rock Li isotopes analyses yield δ7Li values of +0.3 ~ +1.9‰ for the Jiajika Li-rich pegmatites, -0.5 ~ -0.8‰ for the Majingzi two-mica granite, and -3.2 ~ +2.4‰ for the Xikang Group metapelites, respectively. Modeling studies on trace elements demonstrate that the Jiajika Li-rich pegmatites are unlikely to have been originated from extreme differentiation of the Majingzi two-mica granite as traditionally thought. Instead, they could be directly generated by low degrees (5 ~ 20%) of muscovite-dehydration melting of a mixed source dominated by Li-rich claystones and subordinate Xikang Group metapelites under amphibolite facies conditions. The Sr isotopic modeling further suggests that about 60 ~ 70% Li-rich claystones are involved in the source of the Jiajika Li-rich pegmatites. The Li isotopic modeling suggests that involvement of more claystone results in lower d7Li values in pegmatites, which could explain the general observation that the Jiajika Li-rich pegmatites always show Li isotopic compositions lighter than the Li-poor counterparts. Accordingly, we proposed that the existence of Li-rich claystone is the key factor controlling whether Li mineralization happens or not.

The Dahongliutan Li-mineralized belt is located in the Tianshuihai terrane and hosts a number of rare metal pegmatite deposits. More than 7000 pegmatite dykes are distributed around the Dahongliutan granite pluton. In this study, systematic geochronological, mineralogical, petrological and geochemical investigations on the Dahongliutan granite, pegmatites (Daoban Li-poor pegmatite, Akshay Li-poor pegmatite and Akshay Li-rich pegmatite) and associated Triassic Baryanharshan Group metapelites are performed. The U-Pb dating of zircon and cassiterite yields that the emplacement of pegmatites in the Dahongliutan Li-mineralized belt occurred at ca. 195 ~ 216 Ma. The pegmatites in the Dahongliutan Li-mineralized belt are characterized by higher SiO2 and Al2O3 contents, and lower TiO2, TFe2O3, MgO and CaO contents compared to the Dahongliutan granite. The Li-poor pegmatites have comparable or lower Rb, Cs and Li contents relative to the Dahongliutan granite. The εNd(t) values (-8.7 ~ -10.0) of the Li-poor pegmatite are much lower than those (-7.5 ~ -8.1) of the Dahongliutan granite, but they fall into the field of the surrounding Triassic metapelite. The Akshay Li-rich pegmatite has significantly higher ISr values (0.7223 ~ 0.7227, obtained from apatite) than the granite (0.7108 ~ 0.7157) and metapelite (0.7107 ~ 0.7109). The whole-rock δ7Li values of the Dahongliutan granite, pegmatite and metapelite are +0.8 ~ +5.7‰, +0.8 ~ +14.4‰ and -4.2 ~ +2.8‰, respectively. The trace elements modeling combined with Sr-Nd isotopes suggests that the pegmatites in the Dahongliutan Li-mineralized belt did not originate from fractional crystallization of the granite. Instead, they formed by direct anatexis. The Li-poor pegmatites mainly derived from the Baryanharshan metapelite (probably with claystone interlayers), whereas the source of the Li-rich pegmatite is dominated by Li-rich claystone. In addition, the extremely heavy Li isotopic composition (+10.5 ~ +14.4‰) of the Akshay Li-rich pegmatite indicates that large amounts of evaporites are likely to be involved in the source of the Li-rich pegmatite. The Li isotopic modeling implies that Li-rich claystone and evaporate in the source are crucial to pegmatitic spodumene mineralization. Meanwhile, the source character is the main factor resulting in the Li isotopic fractionation between the Li-poor pegmatite and the Li-rich pegmatite. Overall, the rare metal pegmatites in the Songpan-Ganze-Tianshuihai Orogenic belt share similar petrogenesis and metallogenesis based on the comparison between the Jiajika Li-rich pegmatite and the pegmatite in the Dahognliutan Li-mineralized belt.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] 徐康宁. 垂直流人工湿地污水处理甲烷减排研究[D]. 重庆. 重庆大学,2016.
[2] 黄震,谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊,2021,36(2):1010-1018.
[3] 上官小英,常海青,梅华强. 太阳能发电技术及其发展趋势和展望[J]. 能源与节能,2019(3):60-63.
[4] 胡浪,乔俊叁. 锂离子动力电池发展现状及应用前景[J]. 时代汽车,2021(1):88-89.
[5] 付小方,袁蔺平,王登红,等. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型[J]. 矿床地质,2015,34(6):1172-1186.
[6] 许志琴,付小方,赵中宝,等. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨[J]. 地球科学,2019,44(5):1452-1463.
[7] KESLER S E,GRUBER P W,MEDINA P A,et al. Global lithium resources:Relative importance of pegmatite,brine and other deposits[J]. Ore Geology Reviews,2012,48(5):55-69.
[8] 吴西顺,孙艳,王登红,等. 国际锂矿开发的技术现状、革新及展望[J]. 矿产综合利用,2020(6):110-120.
[9] 李建康,刘喜方,王登红.中国锂矿成矿规律概要[J].地质学报,2014,88(12):2269-2283.
[10] LONDON D. A petrologic assessment of internal zonation in granitic pegmatites[J]. Lithos,2014,184:74-104.
[11] LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews,2018,101:349-383.
[12] HULSBOSCH N,HERTOGEN J,DEWAELE S,et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda):quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups [J]. Geochimica et Cosmochimica Acta,2014,132:349-374.
[13] SIMMONS W B,FOORD E E,FALSTER A U,et al. Evidence for an anatectic origin of granitic pegmatites,Western Maine,USA[C] // Geological Society of America Annual Meeting,New Orleans,LA.,Abstracts with Programs 27,1995,6:A411.
[14] THOMAS R,WEBSTER J D,HEINRICH W. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J]. Contributions to Mineralogy & Petrology,2000,139(4):394-401.
[15] CHEN B,HUANG C,ZHAO H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology,2020,551:119769.
[16] MATTERN F,SCHNEIDER W. Suturing of the Proto- and paleo-Tethys oceans in the western Kunlun (Xinjiang,China)[J]. Journal of Asian Earth Science,2000,18,637-650.
[17] 肖文交,侯泉林,李继亮,等. 西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑:地球科学),2000,30(S1):22-28.
[18] 李侃,高永宝,滕家欣,等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质,2019,52(4):206-221.
[19] 王核,李沛,马华东,等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学,2017,41(6):1053-1062.
[20] MCCAULEY A,BRADLEY D C. The global age distribution of granitic pegmatites [J]. Canadian Mineralogist,2014,52(2):183-190.
[21] 王登红,邹天人,徐志刚,等. 伟晶岩矿床示踪造山过程的研究进展[J]. 地球科学进展,2004,19(4):614-620.
[22] 王登红,李建康,付小方. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学,2005,34(6):3-9.
[23] GINSBURG A I,RODIONOV G G. On the depth of formation of granitic pegmatites[J]. Geol. Rudn. Mestorozhd.,1960:45-54(in Russ.).
[24] ČERNÝ P,ERCIT T S. The classification of granitic pegmatites revisited[J]. Canadian Mineralogist,2005,43(6):2005-2026.
[25] ČERNÝ P. Distribution,affiliation and derivation of rare-element granitic pegmatites in the Canadian Shield[J]. Geol. Rundschau,1990,79(2):183-226.
[26] ČERNÝ P. Rare-element granite pegmatites. Part I:anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada,1991,18(2):49-67.
[27] JAHNS R H,BURNHAM C W. Experimental studies of pegmatite genesis:I. A model for the derivation and crystallization of granitic pegmatites[J]. Economic Geology,1969,64(8):843-864.
[28] LONDON D. Granitic pegmatites:an assessment of current concepts and directions for the future[J]. Lithos,2005,80(1-4):281-303.
[29] LONDON D. The origin of primary textures in granitic pegmatites[J]. Canadian Mineralogist,2009,47(4):697-724.
[30] LONDON D,MORGAN V I G B. The pegmatite puzzle[J]. Elements,2012,8(4):263-268.
[31] LONDON D. Subsolidus isothermal fractional crystallization[J]. American Mineralogist,2014, 99(2-3):543-546.
[32] LONDON D. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O:a petrogenetic grid for lithium-rich pegmatites[J]. American Mineralogist,1984,69(11-12):995-1004.
[33] LONDON D. The magmatic-hydrothermal transition in the Tanco rare-element pegmatite:evidence from fluid inclusions and phase equilibrium experiments[J]. American Mineralogist,1986,71(3-4):376-395.
[34] CHAKOUMAKOS B C,LUMPKIN G R. Pressure-temperature constraints on the crystallization of the Harding pegmatite,Taos County,New Mexico[J]. Canadian Mineralogist,1990,28:287-298.
[35] MORGAN G B V I,LONDON D. Crystallization of the Little Three layered pegmatite-aplite dike,Ramona District,California[J]. Contributions to Mineralogy & Petrology,1999,136(4):310-330.
[36] LONDON D,MORGAN G B V I,PAUL K A,et al. Internal evolution of a miarolitic granitic pegmatite:the Little Three Mine,Ramona,California (USA)[J]. Canadian Mineralogist,2012,50(4):1025-1054.
[37] COLOMBO F,SFRAGULLA J,GONZÁLES D E L,TÁNAGO J. The garnet-phosphate buffer in peraluminous granitic magmas:a case study from pegmatites of the Pocho District,Córdoba,Argentina[J]. Canadian Mineralogist,2012,50(6):1555-1571.
[38] TAYLOR B E,FOORD E E,Friedrichsen H. Stable isotope and fluid inclusion studies of gem-bearing granitic pegmatite-aplite dikes,San Diego Co.,California[J]. Contributions to Mineralogy & Petrology,1979,68(2):187-205.
[39] THOMAS A V,BRAY C J,SPOONER E T C. A discussion of the Jahns-Burnham proposal for the formation of zoned granitic pegmatites using solid-liquid-vapour inclusions from the Tanco pegmatite,SE Manitoba,Canada[J]. Transactions of the Royal Society of Edinburgh Earth Sciences,1988,79(2-3):299-315.
[40] SIRBESCU M L,NABELEK P I. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites,Black Hills,South Dakota—Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2003,67(13):2443-2465.
[41] FUERTES-FUENTE M,MARTIN-IZARD A,BOIRON M C,et al. Fluid evolution of rare-element and muscovite granitic pegmatites from central Galicia,NW Spain[J]. Mineralium Deposita,2000,35(4):332-345.
[42] THOMAS M,WILLIAMS-JONES A E. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton,Québec Canada[J]. Chemical Geology,2018,493:281-297.
[43] GIORDANO D,ROMANO D B,DINGWELL D B,et al. The combined effects of water and fluorine on the viscosity of silicic magmas[J]. Geochimica et Cosmochimica Acta,2004,68(24):5159-5168.
[44] BARTELS A,BEHRENS H,HOLTZ F,et al. The effect of fluorine,boron and phosphorus on the viscosity of pegmatite forming melts[J]. Chemical Geology,2013,346:184-198.
[45] BARTELS A,VETERE F,HOLTZ F,et al. Viscosity of flux-rich pegmatitic melts[J]. Contributions to Mineralogy & Petrology,2011,162(1):51-60.
[46] MANETA V. The effect of Li on the petrogenesis of granitic pegmatites[D]. Montréal:McGill University,2015:57-62.
[47] THOMAS R,DAVIDSON P,SCHMIDT C. Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian RØnne granite,Bornholm Island,Denmark[J]. Contributions to Mineralogy & Petrology,2011,161(2):315-329.
[48] THOMAS R,SCHMIDT C,VEKSLER I,et al. The formation of peralkaline pegmatitic melt fractions:evidence from melt and fluid inclusion studies[J]. Anais da Academia Brasileira de Cienias,2006,16:61-67.
[49] MUSTART D A. Phase relations in the peralkaline portion of the system Na2O–Al2O3–SiO2–H2O[D]. Palo Alto:Stanford University,1972.
[50] WENGER M,ARMBRUSTER T. Crystal chemistry of lithium:oxygen coordination and bonding[J]. European Journal of Mineralogy,1991,3:387-399.
[51] WUNDER B,MEIXNER A,ROMER R,et al. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contributions to Mineralogy & Petrology,2006,151(1):112-120.
[52] WUNDER B,MEIXNER A,ROMER R L,et al. Lithium isotope fractionation between Li bearing staurolite,Li-mica and aqueous fluids:an experimental study[J]. Chemical Geology,2007,238(3-4):277-290.
[53] WUNDER B,MEIXNER A,ROMER R L,et al. Li-isotope fractionation between silicates and fluids:pressure dependence and influence of the bonding environment[J]. European Journal of Mineralogy,2011,23:333-342.
[54] BRYANT C J,CHAPPELL B W,BENNETT V C,et al. Lithium isotopic compositions of the New England Batholith:correlations with inferred source rock compositions[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences,2004,95:199-214.
[55] TENG F Z,MCDONOUGH W F,RUDNICK R L,et al. Lithium isotopic composition and concentration of the upper continental crust[J]. Geochimica et Cosmochimica Acta,2004,68(20):4167-4178.
[56] BARNES E M,WEIS D,GROAT L A. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group,NWT,Canada[J]. Lithos,2012,132:21-36.
[57] TENG F Z,MCDONOUGH W F,RUDNICK R L,et al. Lithium isotopic systematics of granites and pegmatites from the Black Hills,South Dakota[J]. American Mineralogist,2006a,91(10):1488-1498.
[58] DEVEAUD S,MILLOT R,VILLAROS A. The genesis of LCT type granitic pegmatites,as illustrated by lithium isotopes in micas[J]. Chemical Geology,2015,411:97-111.
[59] FAN J J,TANG G J,WEI G J,et al. Lithium isotope fractionation during fluid exsolution:implications for Li mineralization of the Bailongshan pegmatites in the west Kunlun,NW Tibet[J]. Lithos,2020,s352-353:105-236.
[60] ZHANG H J,TIAN S H,WANG D H,et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit,Sichuan,China[J]. Ore Geology Reviews,2021,134:104 -139.
[61] 刘丽君,王登红,侯可军,等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘,2017,24(5):167-171.
[62] TENG F Z,MCDONOUGH W F,RUDNICK R L,et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth and Planetary Science Letters,2006b,243(3-4):701-710.
[63] KRIENITZ M S,GARBE-SCHÖNBERG C D,ROMER R L,et al. Lithium isotope variations in ocean island basalts—Implications for the development of mantle heterogeneity[J]. Journal of Petrology,2012,53(11):2333-2347.
[64] ZHOU J S,WANG Q,XU Y G,et al. Geochronology,petrology,and lithium isotope geochemistry of the Bailongshan granite-pegmatite system,northern Tibet:Implications for the ore-forming potential of pegmatites[J]. Chemical Geology,2021,584:120484.
[65] HUNT T S. Notes on granitic rocks[J]. Am. J. Sci.,1871,1:82-89.
[66] ČERNÝ P,MEINTZER R E,Anderson A J. Extreme fractionation in rare-element granitic pegmatites:selected examples of data and mechanisms[J]. Canadian Mineralogist,1985,23(3):381-421.
[67] RODA ROBLES E,PESQUERA A,GIL P,et al. From granites to highly evolved pegmatites:a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora,Spain)[J]. Lithos,2012,153(15):192-207.
[68] NABELEK P I,RUSS-NABELEK C,DENISON J R. The generation and crystallization conditions of the Proterozoic Harney Peak leukogranite,Black Hills,South Dakota,U.S.A.—petrologic and geochemical constraints[J]. Contributions to Mineralogy and Petrology,1992,110(2-3):173-191.
[69] TINDLE A G,BREAKS F W. Columbite-tantalite mineral chemistry from rare element granitic pegmatites:separation Lake area,N.W. Ontario,Canada[J]. Mineralogy and Petrology,2000,70:165-198.
[70] SWEETAPPLE M T,COLLINS P L F. Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton,Western Australia[J]. Economic Geology,2002,97(4):873-895.
[71] MÜLLER A,KEARSLEY A,SPRATT J,et al. Petrogenetic implications of magmatic garnet in granitic pegmatites from Southern Norway[J]. Canadian Mineralogist,2012,50(4):1095-1115.
[72] VIEIRA R,RODA-ROBLES E,PESQUERA A,et al. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal)[J]. American Mineralogist,2011,96(4):637-645.
[73] BARROS R,MENUGE J F. The origin of spodumene pegmatites associated with the Leinster granite in Southeast Ireland[J]. Canadian Mineralogist,2016,54(4):847-862.
[74] MONTEYNE-POULAERT G,DELWICHE R,CAHEN L. Age de mineralisations pegmatitiques et filoniennnes du Rwanda et du Burundi[J]. Ann. Soc. Geol. Belg.,1962,71:272-295.
[75] O’CONNOR P J,GALLAGHER V,KENNAN P S. Genesis of lithium pegmatites from the leinster granite margin,Southeast Ireland:geochemical constraints[J]. Geologica Journal,1991,26(4):295-305.
[76] O’CONNOR P J,AFTALION M,KENNAN P S. Isotopic U-Pb ages of zircon and monazite from the Leinster Granite,southeast Ireland[J]. Geological Magazine,1989,126(6):725-728.
[77] THOMAS R,DAVIDSON P. The missing link between granites and granitic pegmatites[J]. Journal of Geosciences,2013,58(2):183-200.
[78] 赵振华,陈华勇,韩金生. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报(自然科学版)(中英文),2022,61(1):1-26.
[79] WEBBER K L, SIMMONS W B, FALSTE A U,et al. Anatectic pegmatites of the Oxford County pegmatite field,Maine,USA[C] // PEG 2019-9th International Symposium on Granitic Pegmatites,Pala,California,USA,2019:87-90.
[80] SHAW R A,GOODENOUGH K M,ROBERTS N M W,et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes:a case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research,2016,281:338-362.
[81] PARTINGTON G A,MCNAUGHTON N J,WILLIAMS I S. A review of the geology,mineralization,and geochronology of the Greenbushes Pegmatite,Western Australia[J]. Economic Geology,1995,90(3):616-635.
[82] BRADLEY D,SHEA E,BUCHWALDT R,et al. Geochronology and Tectonic Context of Lithium-Cesium-Tantalum Pegmatites in the Appalachians[J]. Canadian Mineralogist,2016,54(4):945-969.
[83] SOLAR G S,TOMASCAK P B. The Sebago pluton and the Sebago Migmatite Domain,Southern Maine:results from new studies[C] // 2009 Annual Meeting of Northeastern Section,Geological Society of America,Field Trip 2,2009:1-24.
[84] SIMMONS W B,FALSTER A U,WEBBER K L,et al. Bulk composition of Mt. Mica Pegmatite,Maine,USA:Implications for the origin of an LCT type pegmatite by anatexis[J]. Canadian Mineralogist,2016,54(4):1053-1070.
[85] BARROS R, KAETER D,MENUGE J F,et al. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry[J]. Lithos,2020,352-353:1-19.
[86] MARTINS T,RODA-ROBLES E,LIMA A,et al. Geochemistry and evolution of micas in the Barroso-Alvão pegmatite field,northern Portugal[J]. Canadian Mineralogist,2012, 50(4):1117-1119.
[87] VILLAROS A,PICHAVANT M. Mica-liquid trace elements partitioning and the granite-pegmatite connection:The St-Sylvestre complex (Western French Massif Central)[J]. Chemical Geology,2019,528:119-265.
[88] MANETA V,BAKER D R,MINARIK W. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts[J]. Contributions to Mineralogy & Petrology,2015,170(1):4.
[89] THOMAS R,DAVIDSON P. Water in granite and pegmatite-forming melts[J]. Ore Geology Reviews,2012a,46:32-46.
[90] THOMAS R,DAVIDSON P,BADANINA E. A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite,East Transbaikalia,Russia:implications for pegmatite-forming melt systems[J]. Mineralogy & Petrology,2009,96(3-4):129-140.
[91] THOMAS R,DAVIDSON P. Revisiting complete miscibility between silicate melts and hydrous fluids,and the extreme enrichment of some elements in the supercritical state—consequences for the formation of pegmatites and ore deposits[J]. Ore Geology Reviews,2016,72:1088-1101.
[92] THOMAS R,DAVIDSON P,BEURLEN H. The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research[J]. Mineralogy and Petrology,2012b,106(1-2):55-73.
[93] KAETER D,BARROS R,MENUGE J F,et al. The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland:LA-ICP-MS chemical mapping of muscovite and columbite-tantalite[J]. Geochimica et Cosmochimica Acta,2018,240:98-130.
[94] BALLOUARD C,POUJOL M,BOULVAIS P,et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology,2016,44:231-234.
[95] RAO C,WANG R,YANG Y,et al. Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China)[J]. Ore Geology Reviews,2017,91:864-876.
[96] XU Z Q,FU X F,WANG R C,et al. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt,East Tibet[J]. Lithos,2020, 354-355:105281.
[97] 郝雪峰,付小方,梁斌,等. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质,2015,34(6):1199-1208.
[98] 李名则,秦宇龙,李峥,等. 川西甲基卡二云母花岗岩与伟晶岩脉地球化学特征及其地质意义[J]. 岩石矿物学杂志,2018,37(3):366-378.
[99] 侯江龙,李建康,王登红,等. 四川甲基卡锂矿床花岗岩体中云母类矿物的元素组成对矿区成矿条件的指示[J]. 地球科学,2018a,43(S2):119-134.
[100] 侯江龙,李建康,张玉洁,等. 四川甲基卡锂矿床花岗岩体Li同位素组成及其对稀有金属成矿的制约[J]. 地球科学,2018b,43(6):2042-2054.
[101] 唐国凡,吴胜先. 四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告[R]. 四川省地质局攀西地质大队,1984.
[102] 代鸿章,王登红,刘丽君,等. 川西甲基卡308号伟晶岩脉年代学和地球化学特征及其地质意义[J]. 地球科学,2018,43(10):3664-3681.
[103] DAI H Z,WANG D Z,LIU L J,et al. Geochronology and Geochemistry of Li(Be)-Bearing Granitic Pegmatites from the Jiajika Superlarge Li-Polymetallic Deposit in Western Sichuan,China[J]. Journal of Earth Science,2019,30(4):707-727.
[104] 李建康,王登红,张德会,等. 四川甲基卡伟晶岩型锂多金属矿床成矿流体来源研究[J]. 岩石矿物学杂志,2006a,25(1):45-52.
[105] 李建康,王登红,张德会,等. 川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义[J]. 矿床地质,2006b,25(S1):131-134.
[106] 李贤芳,田世洪,王登红,等. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系:U-Pb定年、Hf-O同位素和地球化学证据[J]. 矿床地质,2020,39(2):273-304.
[107] LI J K,WANG D H,CHEN Y C. The Ore-forming Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province:Evidence from Isotope Dating[J]. Acta Geologica Sinica (English Edition),2013,87(1):91-101.
[108] 岳相元,张贻,周雄,等. 川西可尔因矿集区稀有金属矿床成矿规律与找矿方向[J]. 矿床地质,2019,38(4):867-876.
[109] 费光春,杨峥,杨继忆,等. 四川马尔康党坝花岗伟晶岩型稀有金属矿床成矿时代的限定:来自LA-MC-ICP-MS锡石U-Pb定年的证据[J]. 地质学报,2020,94(3):836-849.
[110] 廖远安,姚学良. 金川—过铝多阶段花岗岩体演化特征及其与成矿关系[J].矿物岩石,1992,12(1):12-22.
[111] 古城会. 四川省可尔因伟晶岩田东南密集区锂辉石矿床成矿规律[J]. 地质找矿论丛,2014,29(1):59-65.
[112] 许家斌,费光春,覃立业,等. 四川可尔因矿田李家沟伟晶岩型稀有金属矿床锡石LA-MC-ICP-MS U-Pb定年及地质意义[J]. 地质与勘探,2020,56(2):346-358.
[113] FEI G C,MENUGE J F,CHEN C S,et al. Evolution of pegmatite ore-forming fluid:The Lijiagou spodumene pegmatites in the Songpan-Garze Fold Belt,southwestern Sichuan province,China[J]. Ore Geology Reviews,2021,139:104441.
[114] YAN Q H,QIU Z W,WANG H,et al. Age of the Dahongliutan rare metal pegmatite deposit,West Kunlun,Xinjiang (NW China):Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews,2018,100:561-573.
[115] 乔耿彪,张汉德,伍跃中,等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报,2015,89(7):1180-1194.
[116] 魏小鹏,王核,胡军,等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学,2017,46(1):66-80.
[117] 周兵,孙义选,孔德懿. 新疆大红柳滩地区稀有金属矿成矿地质特征及找矿前景[J]. 四川地质学报,2011,31(3):288-292.
[118] WANG H,GAO H,ZHANG X Y,et al. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit,West Kunlun orogenic belt,NW China[J]. Lithos,2020,360-361:105449.
[119] XING C M,WANG C Y,WANG H. Magmatic-hydrothermal processes recorded by muscovite and columbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt,NW China[J]. Lithos,2020,364-365(3):105507.
[120] YIN R,HUANG X L,XU Y G,et al. Mineralogical constraints on the magmatic-hydrothermal evolution of rare-elements deposits in the Bailongshan granitic pegmatites,Xinjiang,NW China[J]. Lithos,2020,352-353:105208.
[121] ZHANG Z Y,JIANG Y H, NIU H C,et al. Fluid inclusion and stable isotope constraints on the source and evolution of ore-forming fluids in the Bailongshan pegmatitic Li-Rb deposit,Xinjiang,western China[J]. Lithos,2021,380:105824.
[122] CAO R,GAO Y,CHEN B,et al. Pegmatite magmatic evolution and rare metal mineralization of the Dahongliutan pegmatite field,Western Kunlun Orogen:Constraints from the B isotopic composition and mineral-chemistry[J]. International Geology Review,2021,30:1-20.
[123] KROGSTAD E J,WALKER R J. High closure temperatures of the U-Pb system in large apatites from the Tin Mountain pegmatite,Black Hills, South Dakota,USA[J]. Geochim. Cosmochim. Acta,1994,58(18):3845-3853.
[124] BOSSE V,BOULVAIS P,GAUTIER P,et al. Fluid-induced disturbance of the monazite Th-Pb chronometer:in situ dating and element mapping in pegmatites from the Rhodope (Greece,Bulgaria)[J]. Chemical Geology,2009,261(3):286-302.
[125] 任宝琴,张辉,唐勇,等. 阿尔泰造山带伟晶岩年代学及其地质意义[J]. 矿物学报,2011,31(3):587-596.
[126] 王登红,陈毓川,徐志刚. 新疆阿尔泰印支期伟晶岩的成矿年代学研究[J].矿物岩石地球化学通报,2003,22(1):14-17.
[127] 陈郑辉,王登红,龚羽飞,等. 新疆哈密镜儿泉伟晶岩型稀有金属矿床40Ar-39Ar年龄及其地质意义[J]. 矿床地质,2006,25(4):470-476.
[128] GEISLER T,PIDGEON R T,VAN BRONSWIJK W,et al. Transport of uranium, thorium,and lead in metamictic zircon under low-temperature hydrothermal conditions[J]. Chemical Geology,2002,191(1):141-154.
[129] GEISLER T,SCHALTEGGER U,TOMASCHEK F. 2007. Re-equilibration of zircon in aqueous fluids and melts[J]. Elements,2007,3(1):43-50.
[130] KUSIAK M A,DUNKLEY D J,SŁABY E,et al. Sensitive high resolution ion microprobe analysis of zircon reequilibrated by late magmatic fluids in a hybridized pluton[J]. Geology,2009,37(12):1063-1066.
[131] DENG X D,LI J W,ZHAO X F,et al. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS:implications for geochronology of pegmatite and associated ore deposits[J]. Chemical Geology,2013,344:1-11.
[132] JOLLIFF B L,PAPIKE J J,SHEARER C K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones,Black Hills,South Dakota,USA[J]. Geochimica et Cosmochimica Acta,1992,56(5):1915-1939.
[133] WALKER R J,HANSON G N,PAPIKE J J. Trace element constraints on pegmatite genesis:Tin Mountain pegmatite,Black Hills,South Dakota[J]. Contributions to Mineralogy and Petrology,1989,101:290-300.
[134] SIMMONS W B,WEBBER K L. Pegmatite genesis:state of the art[J]. European Journal of Mineralogy,2008,20:421-438.
[135] YIN A,HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211-280.
[136] 许志琴,侯立玮,王宗秀,等. 中国松潘-甘孜造山带的造山过程[M]. 北京:地质出版社,1992:1-179.
[137] 王保弟,王立全,王冬兵,等. 三江昌宁-孟连带原-古特提斯构造演化[J].地球科学,2018,43(8):2527-2550.
[138] 王立全,潘桂棠,丁俊,等. 青藏高原及邻区地质图及说明书[M]. 北京:地质出版社,2013.
[139] 许志琴,王汝成,赵中宝,等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报,2018,92(6):1091-1106.
[140] WANG X L,ZHOU J C,GRIFFIN W L,et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:dating the assembly of the Yangtze and Cathaysia blocks [J]. Precambrian Research,2007,159(1-2):117-131.
[141] ROGER F,JOLIVET M,MALAVIEILLE J. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present:A synthesis[J]. Journal of Asian Earth Science,2010,39(4):254-269.
[142] 李建康. 川西典型伟晶岩型矿床的形成机理及其大陆动力学背景[D]. 北京:中国地质大学(北京),2006:22-32.
[143] YUAN C,ZHOU M F,SUN M,et al. Triassic granitoids in the eastern Songpan Ganzi Fold Belt,SW China:Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science letters,2010,290(3-4):481-492.
[144] DE SIGOYER J,VANDERHAEGHE O,DUCHÊNE S. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting,Eastern Tibetan Plateau,China[J]. Journal of Asian Earth Sciences,2014,88:192-216.
[145] 刘丽君,王登红,代鸿章,等. 四川甲基卡新三号超大型锂矿脉稀土元素地球化学[J]. 地球科学,2017,42(10):1673-1683.
[146] 张云湘,胡正纲,骆耀南,等. 中国矿床发现史:四川卷[M]. 北京:地质出版社,1996:105-108.
[147] 李建康,王登红,刘善宝,等. 川西伟晶岩型矿床中流体包裹体的SRXRF分析[J]. 大地构造与成矿学,2008,32(3):332-337.
[148] LI J K,CHOU I M. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit,China[J]. Journal of Geochemical Exploration,2016,171:29-36.
[149] 张传林,马华东,朱炳玉,等. 西昆仑-喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评,2019,65(5):1077-1102.
[150] 张传林,陆松年,于海锋,等. 青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J]. 中国科学(D辑:地球科学),2007,37(2):145-154.
[151] WANG Z H. Tectonic evolution of the western Kunlun orogenic belt,western China[J]. Journal of Asian Earth Sciences,2004,24(2):153-161.
[152] YAN Q H,WANG H,CHI G X,et al. Recognition of a 600-Km-long late Triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt,western China [J]. Economic Geology,2022,117(1):213-236.
[153] 燕洲泉,王怀涛,李元茂,等. 西昆仑大红柳滩伟晶岩型锂铍矿产资源潜力评价[J]. 甘肃地质,2018,27(Z1):42-48.
[154] ZHU Y F,ZENG Y,GU L. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region,Altay Mountains,northwest China[J]. Journal of Asian Earth Sciences,2006,27(1):61-77.
[155] DING K,LIANG T,YANG X Q,et al. Geochronology, petrogenesis and tectonic significance of Dahongliutan pluton in Western Kunlun orogenic belt,NW China[J]. Journal of Central South University,2019,26(12):3420-3435.
[156] ZHANG Q C,LIU Y,WU Z H,et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example:petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys[J]. International Geology Review,2018,61(6):1-20.
[157] LIN J,LIU Y S,YANG Y H,et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences,2016,1(1):5-27.
[158] THIRLWALL M F. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis[J]. Chemical Geology,1991,94(2):85-104.
[159] TANAKA T,TOGASHI S,KAMIOKA H,et al. Jndi-1:a neodymium isotopic reference in consistency with Lajolla neodymium[J]. Chemical Geology,2000,168(3-4):279-281.
[160] LI C F,LI X H,LI Q L,et al. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J]. Analytica Chimica Acta,2012,727:54-60.
[161] WEIS D,KIEFFER B,MAERSCHALK C,et al. High‐precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS[J]. Geochemistry Geophysics Geosystems,2006,7(8):139-149.
[162] SUN H,GAO Y J,XIAO Y L,et al. Lithium isotope fractionation during incongruent melting:constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift,China[J]. Chemical Geology,2016,439:71-82.
[163] GAO Y,CASEY J F. Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2[J]. Geostandards and Geoanalytical Research,2012,36(1):75-81.
[164] ZONG K Q,KLEMD R,YUAN Y,et al. The assembly of Rodinia:The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen,southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research,2017,290:32-48.
[165] HU Z C,ZHANG W,LIU Y S,et al.“Wave”Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis[J]. Analytical Chemistry,2015, 87(2):1152-1157.
[166] LIU YS,HU ZC,GAO S,et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008,257(1-2):34-43.
[167] TONG X R,LIU Y S,HU Z C,et al. Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS[J]. Geostandards and Geoanalytical Research,2016,40(1):85-99.
[168] YANG Y H,WU F Y,YANG J H,et al. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology[J]. Chemical Geology,2014,385:35-55.
[169] LUDWIG K R. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center,2003:39.
[170] YUAN S D,PENG J T,HAO S,et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit,Hunan province,south China:new constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews,2011,43(1):235-242.
[171] 熊欣,李建康,李兴杰,等. 川西扎乌龙花岗伟晶岩型锂矿床成矿作用过程——来自流体包裹体与同位素的证据[J]. 矿床地质,2021,40(5):997-1012.
[172] TISCHENDORF G,GOTTESMANN B,FOERSTER H J,et al. On Li-bearing micas; estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineralogical Magazine,1997,61(6):809-834.
[173] SUN S S,MCDONOUGH W S. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publications,1989,42(1):313-345.
[174] MIDDLEMOST E A K. Magmas and Magmatic Rocks:An Introduction to Igneous Petrology[J]. Mineralogical Magazine,1986,50 (355):185-186.
[175] MANIAR P D,PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,1989,101:635-643.
[176] IRBER W. The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu*, Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta,1999,63(3-4):489-508.
[177] LIN Y J,ZHENG M P,ZHANG Y S,et al. Mineralogical and Geochemical Characteristics of Triassic Lithium-Rich K-Bentonite Deposits in Xiejiacao Section,South China[J]. Minerals,2020,10(1):69.
[178] MAGNA T,JANOUSEK V,KOHÚT M,et al. Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granite[J]. Chemical Geology,2010,274(1-2):94-107.
[179] ROMER R L,MEIXNER A. Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism:the role of rock composition and protolith mineralogy[J]. Geochimica et Cosmochimica Acta,2014,128:158-177.
[180] PATIŇO-DOUCE A E,HARRIS N. Experimental constraints on Himalayan antexis[J]. Journal of Petrology,1998,39(4): 689-710.
[181] JAHN B M,WU F Y,CHEN B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences,2000,91:181-193.
[182] CHRISTENSEN J N,DEPAOLO D J. Time scales of large volume silicic magma systems:Sr isotopic systematics of phenocrysts and glass from the Bishop Tuff,Long Valley,California[J]. Contributions to Mineralogy & Petrology,1993, 113(1):100-114.
[183] BACHMANN O,DUNGAN M A,BUSSY F. Insights into shallow magmatic processes in large silicic magma bodies:the trace element record in the Fish Canyon magma body,Colorado[J]. Contributions to Mineralogy & Petrology,2005,149 (3):338-349.
[184] ICENHOWER J,LONDON D. An experimental study of element partitioning among biotite,muscovite,and coexisting peraluminous silicic melt at 200 MPa (H2O)[J]. American Mineralogist,1995,80(11-12):1229-1251.
[185] CRECRAFT H R,NASH W P,EVANS S H. Late Cenozoic volcanism at Twin Peaks,Utah:Geology and petrology[J]. Journal of Geophysical Research,1981,86(NB11):10303-10320.
[186] PHILPOTTS J A,SCHNETZLER C C. Phenocryst-matrix partition coefficients for K,Rb,Sr and Ba,with applications to anorthosite and basalt genesis[J]. Geochimica et Cosmochimica Acta,1970,34(3):307-322.
[187] SISSON T W,BACON C R. Garnet High-Silica Rhyolite Trace-Element Partition-Coefficients Measured by Ion Microprobe[J]. Geochimica et Cosmochimica Acta,1992,56(6):2133-2136.
[188] VANWESTRENEN W,BLUNDY J,WOOD B. Crystal chemical controls on trace element partitioning between garnet and anhydrous silicate melt[J]. American Mineralogist,1999,84(5-6):838-847.
[189] STEVENS G,CLEMENS J D,DROOP G T R. Melt production during granulite-facies anatexis:experimental data from “primitive”metasedimentary protoliths[J]. Contributions to Mineralogy & Petrology,1997,128(4):352-370.
[190] VIELZEUF D, SCHMIDT M W. Melting relations in hydrous systems revised:applications to metapelites,metagreywackes,and metabasalts[J]. Contributions to Mineralogy & Petrology,2001,141:251-267.
[191] CLEMENS J D,VIELZEUF D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters,1987,86(2-4):287-306.
[192] WOLF M,ROMER R L,GLODNY J. Isotope disequilibrium during partial melting of metasedimentary rocks[J]. Geochimica et Cosmochimica Acta,2019,257:163-183.
[193] ARAOKA D,KAWAHATA H,TAKAGI T,et al. Lithium and strontium isotopic systematics in playas in Nevada,USA:constraints on the origin of lithium[J]. Mineralium Deposita,2014,49(3):371-379.
[194] 王登红,李沛刚,屈文俊,等. 贵州大竹园铝土矿中钨和锂的发现与综合评价[J].中国科学:地球科学,2013,43(1):44-51.
[195] 孙艳,王登红,高允,等. 重庆铜梁地区富锂绿豆岩地球化学特征[J]. 岩石矿物学杂志,2018,37(3):445-453.
[196] FENG M S,MENG W B,ZHANG C G,et al. Geochronology and geochemistry of the‘green-bean rock’(GBR,a potassium-rich felsic tuff) in the western margin of the Yangtze platform,SW China:Significance for the Olenekian-Anisian boundary and the Paleo-Tethys tectonics[J]. Lithos,2021,382-383:105922.
[197] SHAW D M. Trace element fractionation during anatexis[J]. Geochimica et Cosmochimica Acta,1970,34:237-243.
[198] 严爽. 黔北新民铝土矿锂的富集规律及其锂同位素指示意义[D]. 贵州:贵州大学,2020:1-69.
[199] LANGMUIR C H,VOCKE R D,HANSON G N,et al. A general mixing equation with implications to Iceland basalts[J]. Earth and Planetary Science Letters,1978,37(3):380-392.
[200] IVESON A A,WEBSTER J D,ROWE M C,et al. Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids:experimental constraints on the magmatic-hydrothermal transport of metals[J]. Chemical Geology,2019,516:18-41.
[201] MARSCHALL H R,POGGE VON STRANDMANN P A E,SEITZ H M. The lithium isotopic composition of orogenic eclogites and deep subducted slabs[J]. Earth and Planetary Science Letters,2007,262(3-4):563-580.
[202] TOMASCAK P B. Advances in Lithium Isotope Geochemistry[M]. Springer International Publishing,Switzerland,2016:5-149.
[203] LI J,HUANG X L,WEI G J,et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta,2018,240:64-79.
[204] JAHN S,WUNDER B. Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids[J]. Geochimica et Cosmochimica Acta,2009,73(18):5428-5434.
[205] GILETTI B J,SHANAHAN T M. Alkali diffusion in plagioclase feldspar[J]. Chemical Geology,1997,139(1-4):3-20.
[206] CHEN B,GU H O,CHEN Y J,et al. Lithium isotope behavior during partial melting of metapelites from the Jiangnan Orogen, South China:implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization[J]. Chemical Geology,2018,483:372-384.
[207] RICHTER F M,DAVIS A M,DEPAOLO D J,et al. Isotope fractionation by chemical diffusion between molten basalt and rhyolite[J]. Geochimica et Cosmochimica Acta,2003,67(20):3905-3923.
[208] PARKINSON I J,HAMMOND S J,JAMES R H,et al. High-temperature lithium isotope fractionation:insights from lithium isotope diffusion in magmatic systems[J]. Earth and Planetary Science Letters,2007,257(3-4):609-621.
[209] SIRBESCU M L C,NABELEK P I. Crustal melts below 400℃[J]. Geology,2003,31(8):685-688.
[210] VEKSLER I V,DORFMEN A M,KAMENETSKY M,et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts,fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta,2005,69(11):2847-2860.
[211] MARKS M A W,RUDNICK R L,MCCAMMON C,et al. Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex,South Greenland:Evidence for open-system processes during final cooling of peralkaline igneous rocks[J]. Chemical Geology,2007,246(3-4):207-230.
[212] FOUSTOUKOS D I,JAMES R H,BERNDT M E,et al. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field,Northern Juan de Fuca Ridge[J]. Chemical Geology,2004,212(1-2):17-26.
[213] LIEBSCHER A,MEIXNER A,ROMER R L,et al. Experimental calibration of the vapour–liquid phase relations and lithium isotope fractionation in the system H2O-LiCl at 400℃[J]. Geofluids,2007,7(3):1-7.
[214] VLASTÉLIC I,STAUDACHER T,BACHÈLERY P,et al. Lithium isotope fractionation during magma degassing:constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island)[J]. Chemical Geology,2011,284(1-2):26-34.
[215] ZACK T,TOMASCAK P B,RUDNICK R L,et al. Extremely light Li in orogenic eclogites:the role of isotopic fractionation during dehydration in subducted oceanic crust[J]. Earth and Planetary Science Letters,2003,208(3-4):279-290.
[216] 温汉捷,罗重光,杜胜江,等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报,2020,65(1):53-59.
[217] ROMANO C,POE B,MINCIONE V,et al. The viscosities of dry and hydrous XAlSi3O8 (X = Li, Na, K, Ca0.5, Mg0.5) melts[J]. Chemical Geology,2001,174(1-3):115-132.
[218] DINGWELL D B,KNOCHE R,WEBB S L,et al. The effect of B2O3 on the viscosity of haplogranitic liquids[J]. American Mineralogist,1992,77(5):457-461.
[219] MEIXNER A,ALONSO R N,LUCASSEN F,et al. Lithium and Sr isotopic composition of salar deposits in the Central Andes across space and time:the Salar de Pozuelos,Argentina[J]. Mineralium Deposita,2021,57(2):1-24.
[220] LOCOCK A J. An Excel spreadsheet to recast analyses of garnet into end-member components,and a synopsis of the crystal chemistry of natural silicate garnets[J]. Computers & Geosciences,2008,34:1769-1780.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P618.71
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342786
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
赵慧. 松潘-甘孜-甜水海造山带伟晶岩成因和锂矿化机制研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849579-赵慧-地球与空间科学系(19636KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵慧]的文章
百度学术
百度学术中相似的文章
[赵慧]的文章
必应学术
必应学术中相似的文章
[赵慧]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。