[1] WATT F M, JENSEN K B. Epidermal stem cell diversity and quiescence[J]. EMBO Mol Med, 2009, 1(5): 260-267.
[2] KASPER M, JAKS V, ARE A, et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes[J]. Proc Natl Acad Sci U S A, 2011, 108(10): 4099-4104.
[3] WEINREB C, RODRIGUEZ-FRATICELLI A, CAMARGO F D, et al. Lineage tracing on transcriptional landscapes links state to fate during differentiation[J]. Science, 2020, 367(6479)
[4] CONKLIN E G. Mosaic development in ascidian eggs[J]. Journal of Experimental Zoology, 1905, 2(2): 145-223.
[5] SPEMANN H, MANGOLD H. The induction of embryonic predispositions by implantation of organizers foreign to the species.[J]. Archiv Fur Mikroskopische Anatomie Und Entwicklungsmechanik, 1924, 100(3/4): 599-638.
[6] SERBEDZIJA G N, BRONNER-FRASER M, FRASER S E. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration[J]. Development, 1989, 106(4): 809-816.
[7] EAGLESON G W, HARRIS W A. Mapping of the presumptive brain regions in the neural plate of Xenopus laevis[J]. J Neurobiol, 1990, 21(3): 427-440.
[8] WEISBLAT D A, SAWYER R T, STENT G S. Cell lineage analysis by intracellular injection of a tracer enzyme[J]. Science, 1978, 202(4374): 1295-1298.
[9] BALAKIER H, PEDERSEN R A. Allocation of cells to inner cell mass and trophectoderm lineages in preimplantation mouse embryos[J]. Dev Biol, 1982, 90(2): 352-362.
[10] CHALFIE M, TU Y, EUSKIRCHEN G, et al. Green Fluorescent Protein as a Marker for Gene-Expression[J]. Science, 1994, 263(5148): 802-805.
[11] HOLT C E, GARLICK N, CORNEL E. Lipofection of cDNAs in the embryonic vertebrate central nervous system[J]. Neuron, 1990, 4(2): 203-214.
[12] LEMISCHKA I R, RAULET D H, MULLIGAN R C. Developmental potential and dynamic behavior of hematopoietic stem cells[J]. Cell, 1986, 45(6): 917-927.
[13] KRETZSCHMAR K, WATT F M. Lineage tracing[J]. Cell, 2012, 148(1-2): 33-45.
[14] HARRISON D A, PERRIMON N. Simple and efficient generation of marked clones in Drosophila[J]. Curr Biol, 1993, 3(7): 424-433.
[15] OHLSTEIN B, SPRADLING A. The adult Drosophila posterior midgut is maintained by pluripotent stem cells[J]. Nature, 2006, 439(7075): 470-474.
[16] FRUMKIN D, WASSERSTROM A, KAPLAN S, et al. Genomic variability within an organism exposes its cell lineage tree[J]. Plos Computational Biology, 2005, 1(5): 382-394.
[17] SALIPANTE S J, HORWITZ M S. Phylogenetic fate mapping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(14): 5448-5453.
[18] CARLSON C A, KAS A, KIRKWOOD R, et al. Decoding cell lineage from acquired mutations using arbitrary deep sequencing[J]. Nature Methods, 2012, 9(1): 78-U193.
[19] BEHJATI S, HUCH M, VAN BOXTEL R, et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes[J]. Nature, 2014, 513(7518): 422-425.
[20] BIDDY B A, KONG W J, KAMIMOTO K, et al. Single-cell mapping of lineage and identity in direct reprogramming[J]. Nature, 2018, 564(7735): 219-224.
[21] WOODWORTH M B, GIRSKIS K M, WALSH C A. Building a lineage from single cells: genetic techniques for cell lineage tracking[J]. Nature Reviews Genetics, 2017, 18(4): 230-244.
[22] PEIKON I D, GIZATULLINA D I, ZADOR A M. In vivo generation of DNA sequence diversity for cellular barcoding[J]. Nucleic Acids Research, 2014, 42(16).
[23] MCKENNA A, FINDLAY G M, GAGNON J A, et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing[J]. Science, 2016, 353(6298): aaf7907.
[24] FRIEDA K L, LINTON J M, HORMOZ S, et al. Synthetic recording and in situ readout of lineage information in single cells[J]. Nature, 2017, 541(7635): 107-111.
[25] PEI W, FEYERABEND T B, ROSSLER J, et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo[J]. Nature, 2017, 548(7668): 456-460.
[26] SPANJAARD B, HU B, MITIC N, et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars[J]. Nat Biotechnol, 2018, 36(5): 469-473.
[27] ALLEN F, CREPALDI L, ALSINET C, et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks[J]. Nat Biotechnol, 2018, 37: 64-72.
[28] CHEN W, MCKENNA A, SCHREIBER J, et al. Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair[J]. Nucleic Acids Research, 2019, 47(15): 7989-8003.
[29] MCKENNA A, GAGNON J A. Recording development with single cell dynamic lineage tracing[J]. Development, 2019, 146(12): dev169730.
[30] KLEMM S L, SHIPONY Z, GREENLEAF W J. Chromatin accessibility and the regulatory epigenome[J]. Nat Rev Genet, 2019, 20(4): 207-220.
[31] BOSTOCK C J, CHRISTIE S, HATCH F T. Accessibility of DNA in condensed chromatin to nuclease digestion[J]. Nature, 1976, 262(5568): 516-519.
[32] KAPLAN N, MOORE I K, FONDUFE-MITTENDORF Y, et al. The DNA-encoded nucleosome organization of a eukaryotic genome[J]. Nature, 2009, 458(7236): 362-366.
[33] LORCH Y, LAPOINTE J W, KORNBERG R D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones[J]. Cell, 1987, 49(2): 203-210.
[34] LUGER K, MADER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature, 1997, 389(6648): 251-260.
[35] OLINS A L, OLINS D E. Spheroid chromatin units (v bodies)[J]. Science, 1974, 183(4122): 330-332.
[36] WOODCOCK C L, SAFER J P, STANCHFIELD J E. Structural repeating units in chromatin. I. Evidence for their general occurrence[J]. Exp Cell Res, 1976, 97: 101-110.
[37] KORNBERG R D, THOMAS J O. Chromatin structure; oligomers of the histones[J]. Science, 1974, 184(4139): 865-868.
[38] DANN G P, LISZCZAK G P, BAGERT J D, et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference[J]. Nature, 2017, 548(7669): 607-611.
[39] ALLIS C D, JENUWEIN T. The molecular hallmarks of epigenetic control[J]. Nat Rev Genet, 2016, 17(8): 487-500.
[40] MCBRYANT S J, ADAMS V H, HANSEN J C. Chromatin architectural proteins[J]. Chromosome Res, 2006, 14(1): 39-51.
[41] BEDNAR J, HOROWITZ R A, GRIGORYEV S A, et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin[J]. Proc Natl Acad Sci U S A, 1998, 95(24): 14173-14178.
[42] FYODOROV D V, ZHOU B R, SKOULTCHI A I, et al. Emerging roles of linker histones in regulating chromatin structure and function[J]. Nat Rev Mol Cell Biol, 2018, 19(3): 192-206.
[43] ROUTH A, SANDIN S, RHODES D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure[J]. Proc Natl Acad Sci U S A, 2008, 105(26): 8872-8877.
[44] LEE C K, SHIBATA Y, RAO B, et al. Evidence for nucleosome depletion at active regulatory regions genome-wide[J]. Nature Genetics, 2004, 36(8): 900-905.
[45] THURMAN R E, RYNES E, HUMBERT R, et al. The accessible chromatin landscape of the human genome[J]. Nature, 2012, 489(7414): 75-82.
[46] POIRIER M G, BUSSIEK M, LANGOWSKI J, et al. Spontaneous access to DNA target sites in folded chromatin fibers[J]. J Mol Biol, 2008, 379(4): 772-786.
[47] THURMAN R E, RYNES E, HUMBERT R, et al. The accessible chromatin landscape of the human genome[J]. Nature, 2012, 489(7414): 75-82.
[48] KREBS A R, IMANCI D, HOERNER L, et al. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters[J]. Mol Cell, 2017, 67(3): 411-422 e414.
[49] FEDOR M J. Chromatin structure and gene expression[J]. Curr Opin Cell Biol, 1992, 4(3): 436-443.
[50] JOHN S, SABO P J, THURMAN R E, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns[J]. Nat Genet, 2011, 43(3): 264-268.
[51] DI STEFANO B, COLLOMBET S, JAKOBSEN J S, et al. C/EBPalpha creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4[J]. Nat Cell Biol, 2016, 18(4): 371-381.
[52] BAROZZI I, SIMONATTO M, BONIFACIO S, et al. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers[J]. Mol Cell, 2014, 54(5): 844-857.
[53] GRONTVED L, JOHN S, BAEK S, et al. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements[J]. EMBO J, 2013, 32(11): 1568-1583.
[54] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10(12): 1213-1218.
[55] HEWISH D R, BURGOYNE L A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease[J]. Biochem Biophys Res Commun, 1973, 52(2): 504-510.
[56] WU C, BINGHAM P M, LIVAK K J, et al. The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence[J]. Cell, 1979, 16(4): 797-806.
[57] KORNBERG R D. Chromatin structure: a repeating unit of histones and DNA[J]. Science, 1974, 184(4139): 868-871.
[58] SAIKI R K, SCHARF S, FALOONA F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science, 1985, 230(4732): 1350-1354.
[59] JOHN S, SABO P J, JOHNSON T A, et al. Interaction of the glucocorticoid receptor with the chromatin landscape[J]. Mol Cell, 2008, 29(5): 611-624.
[60] CRAWFORD G E, DAVIS S, SCACHERI P C, et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays[J]. Nature Methods, 2006, 3(7): 503-509.
[61] SABO P J, KUEHN M S, THURMAN R, et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays[J]. Nature Methods, 2006, 3(7): 511-518.
[62] BOYLE A P, DAVIS S, SHULHA H P, et al. High-resolution mapping and characterization of open chromatin across the genome[J]. Cell, 2008, 132(2): 311-322.
[63] HESSELBERTH J R, CHEN X, ZHANG Z, et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting[J]. Nature Methods, 2009, 6(4): 283-289.
[64] MIECZKOWSKI J, COOK A, BOWMAN S K, et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility[J]. Nature Communications, 2016, 7(11485).
[65] MUELLER B, MIECZKOWSKI J, KUNDU S, et al. Widespread changes in nucleosome accessibility without changes in nucleosome occupancy during a rapid transcriptional induction[J]. Genes & Development, 2017, 31(5): 451-462.
[66] ALLAN J, FRASER R M, OWEN-HUGHES T, et al. Micrococcal nuclease does not substantially bias nucleosome mapping[J]. J Mol Biol, 2012, 417(3): 152-164.
[67] CHUNG H R, DUNKEL I, HEISE F, et al. The Effect of Micrococcal Nuclease Digestion on Nucleosome Positioning Data[J]. PLoS One, 2010, 5(12): e15754.
[68] KREBS A R, IMANCI D, HOERNER L, et al. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters[J]. Molecular Cell, 2017, 67(3): 411-422.e4.
[69] KELLY T K, LIU Y P, LAY F D, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules[J]. Genome Research, 2012, 22(12): 2497-2506.
[70] CORCES M R, TREVINO A E, HAMILTON E G, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues[J]. Nature Methods, 2017, 14(10): 959-962.
[71] HE H H, MEYER C A, HU S S, et al. Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification[J]. Nature Methods, 2014, 11(1): 73-78.
[72] SCHEP A N, BUENROSTRO J D, DENNY S K, et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions[J]. Genome Res, 2015, 25(11): 1757-1770.
[73] BUENROSTRO J D, WU B, CHANG H Y, et al. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide[J]. Curr Protoc Mol Biol, 2015, 109: 21-29.
[74] BUENROSTRO J D, WU B, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490.
[75] CUSANOVICH D A, HILL A J, AGHAMIRZAIE D, et al. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility[J]. Cell, 2018, 174(5): 1309-1324 e1318.
[76] MEZGER A, KLEMM S, MANN I, et al. High-throughput chromatin accessibility profiling at single-cell resolution[J]. Nature Communications, 2018, 9(3647).
[77] CORCES M R, BUENROSTRO J D, WU B J, et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution[J]. Nature Genetics, 2016, 48(10): 1193-1203.
[78] BUENOSTRO J D, WU B J, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-U264.
[79] CUSANOVICH D A, DAZA R, ADEY A, et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing[J]. Science, 2015, 348(6237): 910-914.
[80] GRUN D, VAN OUDENAARDEN A. Design and Analysis of Single-Cell Sequencing Experiments[J]. Cell, 2015, 163(4): 799-810.
[81] HABER A L, BITON M, ROGEL N, et al. A single-cell survey of the small intestinal epithelium[J]. Nature, 2017, 551(7680): 333-339.
[82] KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5): 1187-1201.
[83] PURAM S V, TIROSH I, PARIKH A S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer[J]. Cell, 2017, 171(7): 1611-1624 e1624.
[84] CANNOODT R, SAELENS W, SAEYS Y. Computational methods for trajectory inference from single-cell transcriptomics[J]. Eur J Immunol, 2016, 46(11): 2496-2506.
[85] ALEMANY A, FLORESCU M, BARON C S, et al. Whole-organism clone tracing using single-cell sequencing[J]. Nature, 2018, 556(7699): 108-112.
[86] RAJ B, WAGNER D E, MCKENNA A, et al. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain[J]. Nat Biotechnol, 2018, 36(5): 442-450.
[87] KESTER L, VAN OUDENAARDEN A. Single-Cell Transcriptomics Meets Lineage Tracing[J]. Cell Stem Cell, 2018, 23(2): 166-179.
[88] JAITIN D A, KENIGSBERG E, KEREN-SHAUL H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types[J]. Science, 2014, 343(6172): 776-779.
[89] PAUL F, ARKIN Y, GILADI A, et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors[J]. Cell, 2015, 163(7): 1663-1677.
[90] RODRIGUEZ-FRATICELLI A E, WOLOCK S L, WEINREB C S, et al. Clonal analysis of lineage fate in native haematopoiesis[J]. Nature, 2018, 553(7687): 212-216.
[91] CARRELHA J, MENG Y, KETTYLE L M, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells[J]. Nature, 2018, 554(7690): 106-111.
[92] GILADI A, AMIT I. Single-Cell Genomics: A Stepping Stone for Future Immunology Discoveries[J]. Cell, 2018, 172(1-2): 14-21.
[93] DOMCKE S, HILL A J, DAZA R M, et al. A human cell atlas of fetal chromatin accessibility[J]. Science, 2020, 370(6518): 7612-7721.
[94] CAO J Y, CUSANOVICH D A, RAMANI V, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells[J]. Science, 2018, 361(6409): 1380-1385.
[95] MCKENNA A, FINDLAY G M, GAGNON J A, et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing[J]. Science, 2016, 353(6298).
[96] LUDWIG L S, LAREAU C A, ULIRSCH J C, et al. Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics[J]. Cell, 2019, 176(6): 1325-1339 e1322.
[97] CHEN X, MIRAGAIA R J, NATARAJAN K N, et al. A rapid and robust method for single cell chromatin accessibility profiling[J]. Nat Commun, 2018, 9(1): 5345.
[98] BLATTMAN S B, JIANG W, OIKONOMOU P, et al. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing[J]. Nat Microbiol, 2020, 5(10): 1192-1201.
[99] ATTAR M, SHARMA E, LI S, et al. A practical solution for preserving single cells for RNA sequencing[J]. Sci Rep, 2018, 8(1): 2151.
[100] CAO J, PACKER J S, RAMANI V, et al. Comprehensive single-cell transcriptional profiling of a multicellular organism[J]. Science, 2017, 357(6352): 661-667.
[101] CHEN J, CHEUNG F, SHI R, et al. PBMC fixation and processing for Chromium single-cell RNA sequencing[J]. J Transl Med, 2018, 16(1): 198.
[102] HOBRO A J, SMITH N I. An evaluation of fixation methods: Spatial and compositional cellular changes observed by Raman imaging[J]. Vibrational Spectroscopy, 2017, 91: 31-45.
[103] ALLES J, KARAISKOS N, PRAKTIKNJO S D, et al. Cell fixation and preservation for droplet-based single-cell transcriptomics[J]. Bmc Biology, 2017, 15(44).
[104] SUMNER A T, EVANS H J, BUCKLAND R A. Mechanisms Involved in Banding of Chromosomes with Quinacrine and Giemsa .1. Effects of Fixation in Methanol-Acetic Acid[J]. Experimental Cell Research, 1973, 81(1): 214-222.
[105] XIANG C C, MEZEY E, CHEN M, et al. Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling[J]. Nucleic Acids Research, 2004, 32(22): e185.
[106] CUSANOVICH D A, HILL A J, AGHAMIRZAIE D, et al. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility[J]. Cell, 2018, 174(5): 1309.
[107] PLINER H A, PACKER J S, MCFALINE-FIGUEROA J L, et al. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data[J]. Molecular Cell, 2018, 71(5): 858.
[108] BUENROSTRO J D, CORCES M R, LAREAU C A, et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation[J]. Cell, 2018, 173(6): 1535-1548 e1516.
[109] LAREAU C A, LUDWIG L S, MUUS C, et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling[J]. Nat Biotechnol, 2021, 39(4): 451-461.
[110] XU J, NUNO K, LITZENBURGER U M, et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA[J]. Elife, 2019, 8: e45105.
[111] MA S, ZHANG B, LAFAVE L M, et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin[J]. Cell, 2020, 183(4): 1103-1116 e1120.
[112] BIDDY B A, KONG W, KAMIMOTO K, et al. Single-cell mapping of lineage and identity in direct reprogramming[J]. Nature, 2018, 564(7735): 219-224.
[113] ALEMANY A, FLORESCU M, BARON C S, et al. Whole-organism clone tracing using single-cell sequencing[J]. Nature, 2018, 556(7699): 108.
[114] MUTO Y, WILSON P C, LEDRU N, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney[J]. Nat Commun, 2021, 12(1): 2190.
[115] TREVINO A E, MULLER F, ANDERSEN J, et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution[J]. Cell, 2021, 184(19): 5053-5069 e5023.
[116] MA S, ZHANG B, LAFAVE L M, et al. Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin[J]. Cell, 2020, 183(4): 1103.
[117] SEMENZA G L. Oxygen Sensing, Hypoxia-Inducible Factors, and Disease Pathophysiology[J]. Annual Review of Pathology: Mechanisms of Disease, Vol 9, 2014, 9: 47-71.
[118] SEMENZA G L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology[J]. Annu Rev Pathol, 2014, 9: 47-71.
[119] BENITA Y, KIKUCHI H, SMITH A D, et al. An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia[J]. Nucleic Acids Research, 2009, 37(14): 4587-4602.
[120] ANDRYSIK Z, BENDER H, GALBRAITH M D, et al. Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response[J]. Nature Communications, 2021, 12(1375).
[121] HIRAGA T, KIZAKA-KONDOH S, HIROTA K, et al. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer[J]. Cancer Research, 2007, 67(9): 4157-4163.
[122] SEMENZA G L. Regulation of Oxygen Homeostasis by Hypoxia-Inducible Factor 1[J]. Physiology, 2009, 24(2): 97-106.
[123] HARRIS A L. Hypoxia - A key regulatory factor in tumour growth[J]. Nature Reviews Cancer, 2002, 2(1): 38-47.
[124] PUNT C J A, KOOPMAN M, VERMEULEN L. From tumour heterogeneity to advances in precision treatment of colorectal cancer[J]. Nature Reviews Clinical Oncology, 2017, 14(4): 235-246.
[125] SADANANDAM A, LYSSIOTIS C A, HOMICSKO K, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy[J]. Nature Medicine, 2013, 19(5): 619-625.
[126] BIAN S H, HOU Y, ZHOU X, et al. Single-cell multiomics sequencing and analyses of human colorectal cancer[J]. Science, 2018, 362(6418): 1060.
修改评论