中文版 | English
题名

GLP-1/NOTCH 和 HIM-5 共同调控秀丽隐杆线虫的雄性体细胞发育

其他题名
GLP-1/NOTCH AND HIM-5 CO-REGULATE SOMATIC MALE DEVELOPMENT IN C. ELEGANS
姓名
姓名拼音
CUI Wenjie
学号
11930158
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
刘东
导师单位
生物系
论文答辩日期
2022-05-05
论文提交日期
2022-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  动物的性腺由非同源细胞谱系的生殖细胞(GCs)和体细胞(SCs)组成。在两性或有性生殖动物中,性别决定主要受性别特异基因、环境因素和/或激素的调节。传统观点认为GCs的性别分化是由来自SCs的各种信号调控的;最新的一些研究发现GCs也会影响SCs的性别发育,具体机制仍有待阐明。到目前为止,秀丽隐杆线虫因其相对独立、明确的SC性别决定通路而成为研究SC-GC相互作用的一个好模型。

  本研究拟解决双突变glp-1(e2141);him-5(e1490)雄性线虫为何发生体细胞性别逆转(未发表)的科学问题。我们已明确单一突变体(glp-1(e2141)him-5(e1490))均未显示任何雄性体细胞缺陷。又进一步核实,阻断L1L3(幼虫1-3期)双突变幼虫的生殖细胞有丝分裂,即可以产生雄虫性别逆转现象。据此我们推测,结合RNA-seqATAC-seq技术,无偏差地分析L1-L3期全基因组表达变化情况,并将这种改变与染色质开放程度结合起来,有望发现体细胞性别分化调控的关键因子或新基因。

  RNA-seq分析确定并且确认了体细胞性别决定途径的两个关键基因, her-1tra-2,在双突变体中的显著变化。her-1表达下降和tra-2表达增强可从遗传学的角度解释glp-1(e2141);him-5(e1490)双突变虫的体细胞性别逆转的现象。其次,双突变雄虫的性腺体细胞中高表达MSP家族成员和GSP-3/4,二者均为精子特异蛋白。据此可推测双突变雄虫的性腺体细胞错误地获得一些GC命运,而这一缺陷很可能是GLP-1(glp-1(e2141)L1-L3期功能丧失所致;glp-1单突变体中有些MSP编码基因高表达,也间接支持这一观点。最后,我们还观察到因HIM-5 (him-5(e1490))功能缺失而导致的染色质开放程度变化,这些变化的区域对应一些在肠道表达和位于X染色体的基因,尽管这些基因的功能尚未被注释,位于X染色体上的nhr-14仅在双突变体雄虫中异常高表达。这些结果暗示由于同时缺失GLP-1HIM-5,雄性肠细胞中原本对雌性特异基因(卵黄蛋白编码基因)的抑制作用被解除了;也就是说,发生了非性腺体细胞的性别逆转。总之,本研究初步阐明了GLP-1HIM-5在雄性性别发育中的新作用,并为进一步研究其调节机制(包括性腺和非性腺体细胞性别逆转)奠定了基础。

 

其他摘要

Animal gonads are composed of germ cells (GCs) and somatic cells (SCs) of distinct developmental cell lineages. In sexually dimorphic animals, the sex determination is mainly regulated by sex-specific genes, environmental cues and/or hormones. By classical/traditional view is that the sex differentiation of GCs is controlled by various signals from SCs; some recent studies recognize that GCs also influence the sexual development of SCs, although the underlying mechanism(s) remain elusive. C. elegans has been so far a good organism to study SC-GC interaction because of its relatively distinct and well-defined genetic regulatory pathways of Somatic sex determination.

This study is intended to address scientific question: why somatic sex reversal occurs in double mutant, glp-1(e2141);him-5(e1490), male nematodes only (unpublished). It was clear from the beginning of our work on this topic that male nematodes with a single mutant, glp-1(e2141) or him-5(e1490), did not show any male somatic cell development defects. We have further verified that blocking germ cell mitosis in double mutant larvae from L1 to L3 (larval stages 1-3) could produce male sex reversal. Accordingly, we hypothesized that combining RNA-seq and ATAC-seq techniques to unbiasedly analyze genome-wide expression changes in the L1-L3 phase and combining such changes with the degree of chromatin opening would identify key factors or genes in the regulation of somatic sex differentiation. 

First of all, we have identified and confirmed two critical gene changes of Somatic sex determination pathway, namely her-1 and tra-2 in the double mutant. The down regulated her-1 expression and enhanced tra-2 match with multiple sex reversal claims in glp-1(e2141);him-5(e1490) males at L1-L3. However, high expression level of sperm-specific genes encoding MSP family members and GSP-3/4 in the somatic gonad may indicate somatic gonad cells are largely mis-fated toward GCs, and this defect is likely due to the loss of GLP-1 (glp-1(e2141)) function at L1-L3; this idea is indirectly supported by the significantly high expression of some MSP-encoding genes in the glp-1 single mutant. Finally, we observed changes in the degree of chromatin opening due to HIM-5 (him-5(e1490)) loss of function, and the regions of these changes correspond to some intestine-expressed genes and genes located on the X chromosome, although the functions of these genes have not been annotated. Interestingly, located on the X chromosome, nhr-14 is abnormally/highly expressed in double mutant males but not in any single mutant. These results imply that the original repression of the female-specific genes in male enterocytes is de-repressed due to the simultaneous loss of GLP-1 and HIM-5. In conclusion, the present study elucidates a novel role of GLP-1 and HIM-5 in male sex development and lays the foundation for further studies on the regulatory mechanism(s), including gonadal and non-gonadal somatic cell sex reversal.

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] SALAS-HUETOS A, BULLó M, SALAS-SALVADó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies [J]. Human reproduction update, 2017, 23(4): 371-89.
[2] BROWN E E, BAUMANN H, CONOVER D O. Temperature and photoperiod effects on sex determination in a fish [J]. Journal of Experimental Marine Biology and Ecology, 2014, 461(39-43.
[3] KOOPMAN P, GUBBAY J, VIVIAN N, et al. Male development of chromosomally female mice transgenic for Sry [J]. Nature, 1991, 351(6322): 117-21.
[4] GUBBAY J, COLLIGNON J, KOOPMAN P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes [J]. Nature, 1990, 346(6281): 245-50.
[5] GONEN N, FUTTNER C R, WOOD S, et al. Sex reversal following deletion of a single distal enhancer of Sox9 [J]. Science (New York, NY), 2018, 360(6396): 1469-73.
[6] CHABOISSIER M C, KOBAYASHI A, VIDAL V I, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J]. Development (Cambridge, England), 2004, 131(9): 1891-901.
[7] LAVERY R, LARDENOIS A, RANC-JIANMOTAMEDI F, et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes [J]. Developmental biology, 2011, 354(1): 111-22.
[8] GARCIA-ORTIZ J E, PELOSI E, OMARI S, et al. Foxl2 functions in sex determination and histogenesis throughout mouse ovary development [J]. BMC Dev Biol, 2009, 9(36-.
[9] CHASSOT A A, RANC F, GREGOIRE E P, et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary [J]. Human molecular genetics, 2008, 17(9): 1264-77.
[10] LIU C F, BINGHAM N, PARKER K, et al. Sex-specific roles of beta-catenin in mouse gonadal development [J]. Human molecular genetics, 2009, 18(3): 405-17.
[11] TOMIZUKA K, HORIKOSHI K, KITADA R, et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling [J]. Human molecular genetics, 2008, 17(9): 1278-91.
[12] TANG F, RICHARDSON N, ALBINA A, et al. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9 [J]. Cells, 2020, 9(5): 1103.
[13] MAATOUK D M, MORK L, CHASSOT A A, et al. Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary [J]. Developmental biology, 2013, 383(2): 295-306.
[14] LAMBETH L S, RAYMOND C S, ROESZLER K N, et al. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads [J]. Developmental biology, 2014, 389(2): 160-72.
[15] IOANNIDIS J, TAYLOR G, ZHAO D, et al. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2020909118.
[16] MATSUDA M, SHINOMIYA A, KINOSHITA M, et al. DMY gene induces male development in genetically female (XX) medaka fish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3865-70.
[17] MATSUDA M, NAGAHAMA Y, SHINOMIYA A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish [J]. Nature, 2002, 417(6888): 559-63.
[18] CHUE J, SMITH C A. Sex determination and sexual differentiation in the avian model [J]. The FEBS journal, 2011, 278(7): 1027-34.
[19] PIEAU C, DORIZZI M, RICHARD-MERCIER N. Temperature-dependent sex determination and gonadal differentiation in reptiles [J]. Cellular and molecular life sciences : CMLS, 1999, 55(6-7): 887-900.
[20] RHEN T, METZGER K, SCHROEDER A, et al. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina [J]. Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation, 2007, 1(4): 255-70.
[21] WEBER C, ZHOU Y, LEE J G, et al. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b [J]. Science (New York, NY), 2020, 368(6488): 303-6.
[22] GE C, YE J, WEBER C, et al. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species [J]. Science (New York, NY), 2018, 360(6389): 645-8.
[23] GULER, Y., SHORT, et al. Integrating field and laboratory evidence for environmental sex determination in the amphipod, Echinogammarus marinus [J]. 2012,
[24] RAMSEY M, CREWS D. Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles [J]. Semin Cell Dev Biol, 2009, 20(3): 283-92.
[25] SARRE S D, GEORGES A, QUINN A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles [J]. BioEssays : news and reviews in molecular, cellular and developmental biology, 2004, 26(6): 639-45.
[26] NAKAMURA M. The mechanism of sex determination in vertebrates-are sex steroids the key-factor? [J]. Journal of experimental zoology Part A, Ecological genetics and physiology, 2010, 313(7): 381-98.
[27] JOSSO N, LAMARRE I, PICARD J-Y, et al. Anti-Müllerian hormone in early human development [J]. Early Human Development, 1993, 33(2): 91-9.
[28] GONEN N, QUINN A, O'NEILL H C, et al. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone [J]. PLoS genetics, 2017, 13(1): e1006520.
[29] SEKIDO R, LOVELL-BADGE R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer [J]. Nature, 2008, 453(7197): 930-4.
[30] DE SANTA BARBARA P, BONNEAUD N, BOIZET B, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene [J]. Molecular and cellular biology, 1998, 18(11): 6653-65.
[31] ANAMTHATHMAKULA P, MIRYALA C S J, MORECI R S, et al. Steroidogenic Factor 1 (Nr5a1) is Required for Sertoli Cell Survival Post Sex Determination [J]. Scientific reports, 2019, 9(1): 4452-.
[32] PFENNIG F, STANDKE A, GUTZEIT H O. The role of Amh signaling in teleost fish – Multiple functions not restricted to the gonads [J]. General and Comparative Endocrinology, 2015, 223(87-107.
[33] NAKAMURA S, WATAKABE I, NISHIMURA T, et al. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka [J]. Development (Cambridge, England), 2012, 139(13): 2283-7.
[34] ZHANG Z, ZHU B, CHEN W, et al. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish [J]. Molecular and Cellular Endocrinology, 2020, 517(110963.
[35] CREWS D, BERGERON J M. Role of reductase and aromatase in sex determination in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination [J]. The Journal of endocrinology, 1994, 143(2): 279-89.
[36] LAMBETH L S, CUMMINS D M, DORAN T J, et al. Overexpression of aromatase alone is sufficient for ovarian development in genetically male chicken embryos [J]. PLoS One, 2013, 8(6): e68362.
[37] WU P F, WANG X F, GAO F, et al. Role of Cyp19a1 in the female pathway of a freshwater turtle species ( Mauremys reevesii) with temperature-dependent sex determination [J]. Zoological research, 2022, 43(1): 81-4.
[38] JIN K, ZUO Q, SONG J, et al. CYP19A1 (aromatase) dominates female gonadal differentiation in chicken (Gallus gallus) embryos sexual differentiation [J]. Biosci Rep, 2020, 40(10): BSR20201576.
[39] RAMSEY M, CREWS D. Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles [J]. Semin Cell Dev Biol, 2009, 20(3): 283-92.
[40] SPILLER C M, BOWLES J. Sex determination in mammalian germ cells [J]. Asian J Androl, 2015, 17(3): 427-32.
[41] MURRAY S M, YANG S Y, VAN DOREN M. Germ cell sex determination: a collaboration between soma and germline [J]. Curr Opin Cell Biol, 2010, 22(6): 722-9.
[42] EVANS E P, FORD C E, LYON M F. Direct evidence of the capacity of the XY germ cell in the mouse to become an oocyte [J]. Nature, 1977, 267(5610): 430-1.
[43] TANAKA S S, TOYOOKA Y, AKASU R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells [J]. Genes & development, 2000, 14(7): 841-53.
[44] LIN Y, PAGE D C. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice [J]. Developmental biology, 2005, 288(2): 309-16.
[45] SHIMADA R, KOIKE H, HIRANO T, et al. NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells [J]. iScience, 2021, 24(8): 102890-.
[46] MIYAUCHI H, OHTA H, NAGAOKA S, et al. Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice [J]. The EMBO journal, 2017, 36(21): 3100-19.
[47] WU Q, FUKUDA K, KATO Y, et al. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming [J]. PLoS biology, 2016, 14(9): e1002553.
[48] IWASAKI-TAKAHASHI Y, SHIKINA S, WATANABE M, et al. Production of functional eggs and sperm from in vitro-expanded type A spermatogonia in rainbow trout [J]. Communications biology, 2020, 3(1): 308.
[49] YOSHIZAKI G, ICHIKAWA M, HAYASHI M, et al. Sexual plasticity of ovarian germ cells in rainbow trout [J]. Development (Cambridge, England), 2010, 137(8): 1227-30.
[50] BOWLES J, KOOPMAN P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors [J]. Reproduction (Cambridge, England), 2010, 139(6): 943-58.
[51] ODOR D L, BLANDAU R J. Ultrastructural studies on fetal and early postnatal mouse ovaries. I. Histogenesis and organogenesis [J]. The American journal of anatomy, 1969, 124(2): 163-86.
[52] MERCHANT H. Rat gonadal and ovarioan organogenesis with and without germ cells. An ultrastructural study [J]. Developmental biology, 1975, 44(1): 1-21.
[53] MCLAREN A. Development of the mammalian gonad: the fate of the supporting cell lineage [J]. BioEssays : news and reviews in molecular, cellular and developmental biology, 1991, 13(4): 151-6.
[54] TAKETO T, SAEED J, MANGANARO T, et al. Müllerian inhibiting substance production associated with loss of oocytes and testicular differentiation in the transplanted mouse XX gonadal primordium [J]. Biology of reproduction, 1993, 49(1): 13-23.
[55] KATO Y, ALAVATTAM K G, SIN H S, et al. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis [J]. Human molecular genetics, 2015, 24(18): 5234-49.
[56] TANNO N, KUNINAKA S, FUJIMURA S, et al. Phosphorylation of the Anaphase Promoting Complex activator FZR1/CDH1 is required for Meiosis II entry in mouse male germ cell [J]. Scientific reports, 2020, 10(1): 10094.
[57] WANG Z, LIU C-Y, ZHAO Y, et al. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation [J]. Nucleic acids research, 2020, 48(7): 3525-41.
[58] KUROKAWA H, SAITO D, NAKAMURA S, et al. Germ cells are essential for sexual dimorphism in the medaka gonad [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(43): 16958-63.
[59] SLANCHEV K, STEBLER J, DE LA CUEVA-MéNDEZ G, et al. Development without germ cells: the role of the germ line in zebrafish sex differentiation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(11): 4074-9.
[60] SIEGFRIED K R, NüSSLEIN-VOLHARD C. Germ line control of female sex determination in zebrafish [J]. Developmental biology, 2008, 324(2): 277-87.
[61] RODRíGUEZ-MARí A, CAñESTRO C, BREMILLER R A, et al. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis [J]. PLoS genetics, 2010, 6(7): e1001034.
[62] PIPREK R P, PECIO A, KUBIAK J Z, et al. Differential effects of busulfan on gonadal development in five divergent anuran species [J]. Reproductive toxicology (Elmsford, NY), 2012, 34(3): 393-401.
[63] DINAPOLI L, CAPEL B. Germ cell depletion does not alter the morphogenesis of the fetal testis or ovary in the red-eared slider turtle (Trachemys scripta) [J]. Journal of experimental zoology Part B, Molecular and developmental evolution, 2007, 308(3): 236-41.
[64] GOTO R, SAITO T, TAKEDA T, et al. Germ cells are not the primary factor for sexual fate determination in goldfish [J]. Developmental biology, 2012, 370(1): 98-109.
[65] GOLDEN J W, RIDDLE D L. A pheromone influences larval development in the nematode Caenorhabditis elegans [J]. Science (New York, NY), 1982, 218(4572): 578-80.
[66] GOLDEN J W, RIDDLE D L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature [J]. Developmental biology, 1984, 102(2): 368-78.
[67] HODGKIN J, HORVITZ H R, BRENNER S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS [J]. Genetics, 1979, 91(1): 67-94.
[68] HALL D H, WINFREY V P, BLAEUER G, et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma [J]. Developmental biology, 1999, 212(1): 101-23.
[69] KUWABARA P E, PERRY M D. It ain't over till it's ova: germline sex determination in C. elegans [J]. BioEssays : news and reviews in molecular, cellular and developmental biology, 2001, 23(7): 596-604.
[70] ROSE K L, WINFREY V P, HOFFMAN L H, et al. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans [J]. Developmental biology, 1997, 192(1): 59-77.
[71] KIMBLE J, SHARROCK W J. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans [J]. Developmental biology, 1983, 96(1): 189-96.
[72] SULSTON J E, ALBERTSON D G, THOMSON J N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures [J]. Developmental biology, 1980, 78(2): 542-76.
[73] LINTS R, EMMONS S W. Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family [J]. Genes Dev, 2002, 16(18): 2390-402.
[74] SULSTON J E, SCHIERENBERG E, WHITE J G, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans [J]. Developmental biology, 1983, 100(1): 64-119.
[75] KIMBLE J E, WHITE J G. On the control of germ cell development in Caenorhabditis elegans [J]. Developmental biology, 1981, 81(2): 208-19.
[76] PIRES-DASILVA A, SOMMER R J. The evolution of signalling pathways in animal development [J]. Nature reviews Genetics, 2003, 4(1): 39-49.
[77] COLLU G M, HIDALGO-SASTRE A, BRENNAN K. Wnt-Notch signalling crosstalk in development and disease [J]. Cellular and molecular life sciences : CMLS, 2014, 71(18): 3553-67.
[78] PERDIGOTO C N, BARDIN A J. Sending the right signal: Notch and stem cells [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1830(2): 2307-22.
[79] LOUVI A, ARTAVANIS-TSAKONAS S. Notch and disease: A growing field [J]. Semin Cell Dev Biol, 2012, 23(4): 473-80.
[80] KOPAN R, ILAGAN M X G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism [J]. Cell, 2009, 137(2): 216-33.
[81] BRAY S J. Notch signalling: a simple pathway becomes complex [J]. Nature reviews Molecular cell biology, 2006, 7(9): 678-89.
[82] GRIDLEY T. Notch signaling in vascular development and physiology [J]. Development (Cambridge, England), 2007, 134(15): 2709-18.
[83] CRITTENDEN S L, TROEMEL E R, EVANS T C, et al. GLP-1 is localized to the mitotic region of the C. elegans germ line [J]. Development (Cambridge, England), 1994, 120(10): 2901-11.
[84] LAMONT L B, CRITTENDEN S L, BERNSTEIN D, et al. FBF-1 and FBF-2 Regulate the Size of the Mitotic Region in the C. elegans Germline [J]. Developmental Cell, 2004, 7(5): 697-707.
[85] ZHANG B, GALLEGOS M, PUOTI A, et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line [J]. Nature, 1997, 390(6659): 477-84.
[86] WICKENS M, BERNSTEIN D S, KIMBLE J, et al. A PUF family portrait: 3'UTR regulation as a way of life [J]. Trends in genetics : TIG, 2002, 18(3): 150-7.
[87] HANSEN D, WILSON-BERRY L, DANG T, et al. Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation [J]. Development (Cambridge, England), 2004, 131(1): 93-104.
[88] ECKMANN C R, CRITTENDEN S L, SUH N, et al. GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans [J]. Genetics, 2004, 168(1): 147-60.
[89] ECKMANN C R, KRAEMER B, WICKENS M, et al. GLD-3, a Bicaudal-C Homolog that Inhibits FBF to Control Germline Sex Determination in C. elegans [J]. Developmental Cell, 2002, 3(5): 697-710.
[90] KRAEMER B, CRITTENDEN S, GALLEGOS M, et al. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans [J]. Curr Biol, 1999, 9(18): 1009-18.
[91] RHIND N R, MILLER L M, KOPCZYNSKI J B, et al. xol-1 acts as an early switch in the C. elegans male/hermaphrodite decision [J]. Cell, 1995, 80(1): 71-82.
[92] FARBOUD B, NOVAK C S, NICOLL M, et al. Dose-dependent action of the RNA binding protein FOX-1 to relay X-chromosome number and determine C. elegans sex [J]. eLife, 2020, 9(e62963.
[93] GLADDEN J M, FARBOUD B, MEYER B J. Revisiting the X:A signal that specifies Caenorhabditis elegans sexual fate [J]. Genetics, 2007, 177(3): 1639-54.
[94] CHU D S, DAWES H E, LIEB J D, et al. A molecular link between gene-specific and chromosome-wide transcriptional repression [J]. Genes Dev, 2002, 16(7): 796-805.
[95] HUNTER C P, WOOD W B. Evidence from mosaic analysis of the masculinizing gene her-1 for cell interactions in C. elegans sex determination [J]. Nature, 1992, 355(6360): 551-5.
[96] PERRY M D, LI W, TRENT C, et al. Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination [J]. Genes Dev, 1993, 7(2): 216-28.
[97] YI W, ZARKOWER D. Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms [J]. Development (Cambridge, England), 1999, 126(5): 873-81.
[98] GOSZCZYNSKI B, CAPTAN V V, DANIELSON A M, et al. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway [J]. Developmental biology, 2016, 413(1): 112-27.
[99] AUSTIN J, KIMBLE J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans [J]. Cell, 1987, 51(4): 589-99.
[100] BEANAN M J, STROME S. Characterization of a germ-line proliferation mutation in C. elegans [J]. Development (Cambridge, England), 1992, 116(3): 755-66.
[101] CAPOWSKI E E, MARTIN P, GARVIN C, et al. Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis elegans [J]. Genetics, 1991, 129(4): 1061-72.
[102] ARANTES-OLIVEIRA N, APFELD J, DILLIN A, et al. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans [J]. Science (New York, NY), 2002, 295(5554): 502-5.
[103] ALPER S, MCELWEE M K, APFELD J, et al. The Caenorhabditis elegans germ line regulates distinct signaling pathways to control lifespan and innate immunity [J]. The Journal of biological chemistry, 2010, 285(3): 1822-8.
[104] BROVERMAN S A, MENEELY P M. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans [J]. Genetics, 1994, 136(1): 119-27.
[105] GOLDSTEIN P. The synaptonemal complexes of Caenorhabditis elegans: pachytene karyotype analysis of hermaphrodites from the recessive him-5 and him-7 mutants [J]. Journal of cell science, 1986, 82(119-27.
[106] CHUNG G, ROSE A M, PETALCORIN M I R, et al. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans [J]. Genes & development, 2015, 29(18): 1969-79.
[107] MENEELY P M, MCGOVERN O L, HEINIS F I, et al. Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans [J]. Genetics, 2012, 190(4): 1251-66.
[108] DAUGHERTY A C, YEO R W, BUENROSTRO J D, et al. Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans [J]. 2017, genome;gr.226233.117v1.
[109] KOSINSKI M, MCDONALD K, SCHWARTZ J, et al. C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes [J]. Development (Cambridge, England), 2005, 132(15): 3357-69.
[110] WU J C, GO A C, SAMSON M, et al. Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans [J]. Genetics, 2012, 190(1): 143-57.
[111] CHAKRABARTI R, KLINE D, LU J, et al. Analysis of Ppp1cc-null mice suggests a role for PP1gamma2 in sperm morphogenesis [J]. Biology of reproduction, 2007, 76(6): 992-1001.

所在学位评定分委会
生物系
国内图书分类号
Q75
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342795
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
崔文杰. GLP-1/NOTCH 和 HIM-5 共同调控秀丽隐杆线虫的雄性体细胞发育[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930158-崔文杰-生物系.pdf(3679KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[崔文杰]的文章
百度学术
百度学术中相似的文章
[崔文杰]的文章
必应学术
必应学术中相似的文章
[崔文杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。