[1] SALAS-HUETOS A, BULLó M, SALAS-SALVADó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies [J]. Human reproduction update, 2017, 23(4): 371-89.
[2] BROWN E E, BAUMANN H, CONOVER D O. Temperature and photoperiod effects on sex determination in a fish [J]. Journal of Experimental Marine Biology and Ecology, 2014, 461(39-43.
[3] KOOPMAN P, GUBBAY J, VIVIAN N, et al. Male development of chromosomally female mice transgenic for Sry [J]. Nature, 1991, 351(6322): 117-21.
[4] GUBBAY J, COLLIGNON J, KOOPMAN P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes [J]. Nature, 1990, 346(6281): 245-50.
[5] GONEN N, FUTTNER C R, WOOD S, et al. Sex reversal following deletion of a single distal enhancer of Sox9 [J]. Science (New York, NY), 2018, 360(6396): 1469-73.
[6] CHABOISSIER M C, KOBAYASHI A, VIDAL V I, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J]. Development (Cambridge, England), 2004, 131(9): 1891-901.
[7] LAVERY R, LARDENOIS A, RANC-JIANMOTAMEDI F, et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes [J]. Developmental biology, 2011, 354(1): 111-22.
[8] GARCIA-ORTIZ J E, PELOSI E, OMARI S, et al. Foxl2 functions in sex determination and histogenesis throughout mouse ovary development [J]. BMC Dev Biol, 2009, 9(36-.
[9] CHASSOT A A, RANC F, GREGOIRE E P, et al. Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary [J]. Human molecular genetics, 2008, 17(9): 1264-77.
[10] LIU C F, BINGHAM N, PARKER K, et al. Sex-specific roles of beta-catenin in mouse gonadal development [J]. Human molecular genetics, 2009, 18(3): 405-17.
[11] TOMIZUKA K, HORIKOSHI K, KITADA R, et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling [J]. Human molecular genetics, 2008, 17(9): 1278-91.
[12] TANG F, RICHARDSON N, ALBINA A, et al. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9 [J]. Cells, 2020, 9(5): 1103.
[13] MAATOUK D M, MORK L, CHASSOT A A, et al. Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary [J]. Developmental biology, 2013, 383(2): 295-306.
[14] LAMBETH L S, RAYMOND C S, ROESZLER K N, et al. Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads [J]. Developmental biology, 2014, 389(2): 160-72.
[15] IOANNIDIS J, TAYLOR G, ZHAO D, et al. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(10): e2020909118.
[16] MATSUDA M, SHINOMIYA A, KINOSHITA M, et al. DMY gene induces male development in genetically female (XX) medaka fish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(10): 3865-70.
[17] MATSUDA M, NAGAHAMA Y, SHINOMIYA A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish [J]. Nature, 2002, 417(6888): 559-63.
[18] CHUE J, SMITH C A. Sex determination and sexual differentiation in the avian model [J]. The FEBS journal, 2011, 278(7): 1027-34.
[19] PIEAU C, DORIZZI M, RICHARD-MERCIER N. Temperature-dependent sex determination and gonadal differentiation in reptiles [J]. Cellular and molecular life sciences : CMLS, 1999, 55(6-7): 887-900.
[20] RHEN T, METZGER K, SCHROEDER A, et al. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina [J]. Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation, 2007, 1(4): 255-70.
[21] WEBER C, ZHOU Y, LEE J G, et al. Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b [J]. Science (New York, NY), 2020, 368(6488): 303-6.
[22] GE C, YE J, WEBER C, et al. The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species [J]. Science (New York, NY), 2018, 360(6389): 645-8.
[23] GULER, Y., SHORT, et al. Integrating field and laboratory evidence for environmental sex determination in the amphipod, Echinogammarus marinus [J]. 2012,
[24] RAMSEY M, CREWS D. Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles [J]. Semin Cell Dev Biol, 2009, 20(3): 283-92.
[25] SARRE S D, GEORGES A, QUINN A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles [J]. BioEssays : news and reviews in molecular, cellular and developmental biology, 2004, 26(6): 639-45.
[26] NAKAMURA M. The mechanism of sex determination in vertebrates-are sex steroids the key-factor? [J]. Journal of experimental zoology Part A, Ecological genetics and physiology, 2010, 313(7): 381-98.
[27] JOSSO N, LAMARRE I, PICARD J-Y, et al. Anti-Müllerian hormone in early human development [J]. Early Human Development, 1993, 33(2): 91-9.
[28] GONEN N, QUINN A, O'NEILL H C, et al. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone [J]. PLoS genetics, 2017, 13(1): e1006520.
[29] SEKIDO R, LOVELL-BADGE R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer [J]. Nature, 2008, 453(7197): 930-4.
[30] DE SANTA BARBARA P, BONNEAUD N, BOIZET B, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene [J]. Molecular and cellular biology, 1998, 18(11): 6653-65.
[31] ANAMTHATHMAKULA P, MIRYALA C S J, MORECI R S, et al. Steroidogenic Factor 1 (Nr5a1) is Required for Sertoli Cell Survival Post Sex Determination [J]. Scientific reports, 2019, 9(1): 4452-.
[32] PFENNIG F, STANDKE A, GUTZEIT H O. The role of Amh signaling in teleost fish – Multiple functions not restricted to the gonads [J]. General and Comparative Endocrinology, 2015, 223(87-107.
[33] NAKAMURA S, WATAKABE I, NISHIMURA T, et al. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka [J]. Development (Cambridge, England), 2012, 139(13): 2283-7.
[34] ZHANG Z, ZHU B, CHEN W, et al. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish [J]. Molecular and Cellular Endocrinology, 2020, 517(110963.
[35] CREWS D, BERGERON J M. Role of reductase and aromatase in sex determination in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination [J]. The Journal of endocrinology, 1994, 143(2): 279-89.
[36] LAMBETH L S, CUMMINS D M, DORAN T J, et al. Overexpression of aromatase alone is sufficient for ovarian development in genetically male chicken embryos [J]. PLoS One, 2013, 8(6): e68362.
[37] WU P F, WANG X F, GAO F, et al. Role of Cyp19a1 in the female pathway of a freshwater turtle species ( Mauremys reevesii) with temperature-dependent sex determination [J]. Zoological research, 2022, 43(1): 81-4.
[38] JIN K, ZUO Q, SONG J, et al. CYP19A1 (aromatase) dominates female gonadal differentiation in chicken (Gallus gallus) embryos sexual differentiation [J]. Biosci Rep, 2020, 40(10): BSR20201576.
[39] RAMSEY M, CREWS D. Steroid signaling and temperature-dependent sex determination-Reviewing the evidence for early action of estrogen during ovarian determination in turtles [J]. Semin Cell Dev Biol, 2009, 20(3): 283-92.
[40] SPILLER C M, BOWLES J. Sex determination in mammalian germ cells [J]. Asian J Androl, 2015, 17(3): 427-32.
[41] MURRAY S M, YANG S Y, VAN DOREN M. Germ cell sex determination: a collaboration between soma and germline [J]. Curr Opin Cell Biol, 2010, 22(6): 722-9.
[42] EVANS E P, FORD C E, LYON M F. Direct evidence of the capacity of the XY germ cell in the mouse to become an oocyte [J]. Nature, 1977, 267(5610): 430-1.
[43] TANAKA S S, TOYOOKA Y, AKASU R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells [J]. Genes & development, 2000, 14(7): 841-53.
[44] LIN Y, PAGE D C. Dazl deficiency leads to embryonic arrest of germ cell development in XY C57BL/6 mice [J]. Developmental biology, 2005, 288(2): 309-16.
[45] SHIMADA R, KOIKE H, HIRANO T, et al. NANOS2 suppresses the cell cycle by repressing mTORC1 activators in embryonic male germ cells [J]. iScience, 2021, 24(8): 102890-.
[46] MIYAUCHI H, OHTA H, NAGAOKA S, et al. Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice [J]. The EMBO journal, 2017, 36(21): 3100-19.
[47] WU Q, FUKUDA K, KATO Y, et al. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming [J]. PLoS biology, 2016, 14(9): e1002553.
[48] IWASAKI-TAKAHASHI Y, SHIKINA S, WATANABE M, et al. Production of functional eggs and sperm from in vitro-expanded type A spermatogonia in rainbow trout [J]. Communications biology, 2020, 3(1): 308.
[49] YOSHIZAKI G, ICHIKAWA M, HAYASHI M, et al. Sexual plasticity of ovarian germ cells in rainbow trout [J]. Development (Cambridge, England), 2010, 137(8): 1227-30.
[50] BOWLES J, KOOPMAN P. Sex determination in mammalian germ cells: extrinsic versus intrinsic factors [J]. Reproduction (Cambridge, England), 2010, 139(6): 943-58.
[51] ODOR D L, BLANDAU R J. Ultrastructural studies on fetal and early postnatal mouse ovaries. I. Histogenesis and organogenesis [J]. The American journal of anatomy, 1969, 124(2): 163-86.
[52] MERCHANT H. Rat gonadal and ovarioan organogenesis with and without germ cells. An ultrastructural study [J]. Developmental biology, 1975, 44(1): 1-21.
[53] MCLAREN A. Development of the mammalian gonad: the fate of the supporting cell lineage [J]. BioEssays : news and reviews in molecular, cellular and developmental biology, 1991, 13(4): 151-6.
[54] TAKETO T, SAEED J, MANGANARO T, et al. Müllerian inhibiting substance production associated with loss of oocytes and testicular differentiation in the transplanted mouse XX gonadal primordium [J]. Biology of reproduction, 1993, 49(1): 13-23.
[55] KATO Y, ALAVATTAM K G, SIN H S, et al. FANCB is essential in the male germline and regulates H3K9 methylation on the sex chromosomes during meiosis [J]. Human molecular genetics, 2015, 24(18): 5234-49.
[56] TANNO N, KUNINAKA S, FUJIMURA S, et al. Phosphorylation of the Anaphase Promoting Complex activator FZR1/CDH1 is required for Meiosis II entry in mouse male germ cell [J]. Scientific reports, 2020, 10(1): 10094.
[57] WANG Z, LIU C-Y, ZHAO Y, et al. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation [J]. Nucleic acids research, 2020, 48(7): 3525-41.
[58] KUROKAWA H, SAITO D, NAKAMURA S, et al. Germ cells are essential for sexual dimorphism in the medaka gonad [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(43): 16958-63.
[59] SLANCHEV K, STEBLER J, DE LA CUEVA-MéNDEZ G, et al. Development without germ cells: the role of the germ line in zebrafish sex differentiation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(11): 4074-9.
[60] SIEGFRIED K R, NüSSLEIN-VOLHARD C. Germ line control of female sex determination in zebrafish [J]. Developmental biology, 2008, 324(2): 277-87.
[61] RODRíGUEZ-MARí A, CAñESTRO C, BREMILLER R A, et al. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis [J]. PLoS genetics, 2010, 6(7): e1001034.
[62] PIPREK R P, PECIO A, KUBIAK J Z, et al. Differential effects of busulfan on gonadal development in five divergent anuran species [J]. Reproductive toxicology (Elmsford, NY), 2012, 34(3): 393-401.
[63] DINAPOLI L, CAPEL B. Germ cell depletion does not alter the morphogenesis of the fetal testis or ovary in the red-eared slider turtle (Trachemys scripta) [J]. Journal of experimental zoology Part B, Molecular and developmental evolution, 2007, 308(3): 236-41.
[64] GOTO R, SAITO T, TAKEDA T, et al. Germ cells are not the primary factor for sexual fate determination in goldfish [J]. Developmental biology, 2012, 370(1): 98-109.
[65] GOLDEN J W, RIDDLE D L. A pheromone influences larval development in the nematode Caenorhabditis elegans [J]. Science (New York, NY), 1982, 218(4572): 578-80.
[66] GOLDEN J W, RIDDLE D L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature [J]. Developmental biology, 1984, 102(2): 368-78.
[67] HODGKIN J, HORVITZ H R, BRENNER S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS [J]. Genetics, 1979, 91(1): 67-94.
[68] HALL D H, WINFREY V P, BLAEUER G, et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma [J]. Developmental biology, 1999, 212(1): 101-23.
[69] KUWABARA P E, PERRY M D. It ain't over till it's ova: germline sex determination in C. elegans [J]. BioEssays : news and reviews in molecular, cellular and developmental biology, 2001, 23(7): 596-604.
[70] ROSE K L, WINFREY V P, HOFFMAN L H, et al. The POU gene ceh-18 promotes gonadal sheath cell differentiation and function required for meiotic maturation and ovulation in Caenorhabditis elegans [J]. Developmental biology, 1997, 192(1): 59-77.
[71] KIMBLE J, SHARROCK W J. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans [J]. Developmental biology, 1983, 96(1): 189-96.
[72] SULSTON J E, ALBERTSON D G, THOMSON J N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures [J]. Developmental biology, 1980, 78(2): 542-76.
[73] LINTS R, EMMONS S W. Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family [J]. Genes Dev, 2002, 16(18): 2390-402.
[74] SULSTON J E, SCHIERENBERG E, WHITE J G, et al. The embryonic cell lineage of the nematode Caenorhabditis elegans [J]. Developmental biology, 1983, 100(1): 64-119.
[75] KIMBLE J E, WHITE J G. On the control of germ cell development in Caenorhabditis elegans [J]. Developmental biology, 1981, 81(2): 208-19.
[76] PIRES-DASILVA A, SOMMER R J. The evolution of signalling pathways in animal development [J]. Nature reviews Genetics, 2003, 4(1): 39-49.
[77] COLLU G M, HIDALGO-SASTRE A, BRENNAN K. Wnt-Notch signalling crosstalk in development and disease [J]. Cellular and molecular life sciences : CMLS, 2014, 71(18): 3553-67.
[78] PERDIGOTO C N, BARDIN A J. Sending the right signal: Notch and stem cells [J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1830(2): 2307-22.
[79] LOUVI A, ARTAVANIS-TSAKONAS S. Notch and disease: A growing field [J]. Semin Cell Dev Biol, 2012, 23(4): 473-80.
[80] KOPAN R, ILAGAN M X G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism [J]. Cell, 2009, 137(2): 216-33.
[81] BRAY S J. Notch signalling: a simple pathway becomes complex [J]. Nature reviews Molecular cell biology, 2006, 7(9): 678-89.
[82] GRIDLEY T. Notch signaling in vascular development and physiology [J]. Development (Cambridge, England), 2007, 134(15): 2709-18.
[83] CRITTENDEN S L, TROEMEL E R, EVANS T C, et al. GLP-1 is localized to the mitotic region of the C. elegans germ line [J]. Development (Cambridge, England), 1994, 120(10): 2901-11.
[84] LAMONT L B, CRITTENDEN S L, BERNSTEIN D, et al. FBF-1 and FBF-2 Regulate the Size of the Mitotic Region in the C. elegans Germline [J]. Developmental Cell, 2004, 7(5): 697-707.
[85] ZHANG B, GALLEGOS M, PUOTI A, et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line [J]. Nature, 1997, 390(6659): 477-84.
[86] WICKENS M, BERNSTEIN D S, KIMBLE J, et al. A PUF family portrait: 3'UTR regulation as a way of life [J]. Trends in genetics : TIG, 2002, 18(3): 150-7.
[87] HANSEN D, WILSON-BERRY L, DANG T, et al. Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation [J]. Development (Cambridge, England), 2004, 131(1): 93-104.
[88] ECKMANN C R, CRITTENDEN S L, SUH N, et al. GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans [J]. Genetics, 2004, 168(1): 147-60.
[89] ECKMANN C R, KRAEMER B, WICKENS M, et al. GLD-3, a Bicaudal-C Homolog that Inhibits FBF to Control Germline Sex Determination in C. elegans [J]. Developmental Cell, 2002, 3(5): 697-710.
[90] KRAEMER B, CRITTENDEN S, GALLEGOS M, et al. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans [J]. Curr Biol, 1999, 9(18): 1009-18.
[91] RHIND N R, MILLER L M, KOPCZYNSKI J B, et al. xol-1 acts as an early switch in the C. elegans male/hermaphrodite decision [J]. Cell, 1995, 80(1): 71-82.
[92] FARBOUD B, NOVAK C S, NICOLL M, et al. Dose-dependent action of the RNA binding protein FOX-1 to relay X-chromosome number and determine C. elegans sex [J]. eLife, 2020, 9(e62963.
[93] GLADDEN J M, FARBOUD B, MEYER B J. Revisiting the X:A signal that specifies Caenorhabditis elegans sexual fate [J]. Genetics, 2007, 177(3): 1639-54.
[94] CHU D S, DAWES H E, LIEB J D, et al. A molecular link between gene-specific and chromosome-wide transcriptional repression [J]. Genes Dev, 2002, 16(7): 796-805.
[95] HUNTER C P, WOOD W B. Evidence from mosaic analysis of the masculinizing gene her-1 for cell interactions in C. elegans sex determination [J]. Nature, 1992, 355(6360): 551-5.
[96] PERRY M D, LI W, TRENT C, et al. Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination [J]. Genes Dev, 1993, 7(2): 216-28.
[97] YI W, ZARKOWER D. Similarity of DNA binding and transcriptional regulation by Caenorhabditis elegans MAB-3 and Drosophila melanogaster DSX suggests conservation of sex determining mechanisms [J]. Development (Cambridge, England), 1999, 126(5): 873-81.
[98] GOSZCZYNSKI B, CAPTAN V V, DANIELSON A M, et al. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway [J]. Developmental biology, 2016, 413(1): 112-27.
[99] AUSTIN J, KIMBLE J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans [J]. Cell, 1987, 51(4): 589-99.
[100] BEANAN M J, STROME S. Characterization of a germ-line proliferation mutation in C. elegans [J]. Development (Cambridge, England), 1992, 116(3): 755-66.
[101] CAPOWSKI E E, MARTIN P, GARVIN C, et al. Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis elegans [J]. Genetics, 1991, 129(4): 1061-72.
[102] ARANTES-OLIVEIRA N, APFELD J, DILLIN A, et al. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans [J]. Science (New York, NY), 2002, 295(5554): 502-5.
[103] ALPER S, MCELWEE M K, APFELD J, et al. The Caenorhabditis elegans germ line regulates distinct signaling pathways to control lifespan and innate immunity [J]. The Journal of biological chemistry, 2010, 285(3): 1822-8.
[104] BROVERMAN S A, MENEELY P M. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans [J]. Genetics, 1994, 136(1): 119-27.
[105] GOLDSTEIN P. The synaptonemal complexes of Caenorhabditis elegans: pachytene karyotype analysis of hermaphrodites from the recessive him-5 and him-7 mutants [J]. Journal of cell science, 1986, 82(119-27.
[106] CHUNG G, ROSE A M, PETALCORIN M I R, et al. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans [J]. Genes & development, 2015, 29(18): 1969-79.
[107] MENEELY P M, MCGOVERN O L, HEINIS F I, et al. Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans [J]. Genetics, 2012, 190(4): 1251-66.
[108] DAUGHERTY A C, YEO R W, BUENROSTRO J D, et al. Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans [J]. 2017, genome;gr.226233.117v1.
[109] KOSINSKI M, MCDONALD K, SCHWARTZ J, et al. C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes [J]. Development (Cambridge, England), 2005, 132(15): 3357-69.
[110] WU J C, GO A C, SAMSON M, et al. Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans [J]. Genetics, 2012, 190(1): 143-57.
[111] CHAKRABARTI R, KLINE D, LU J, et al. Analysis of Ppp1cc-null mice suggests a role for PP1gamma2 in sperm morphogenesis [J]. Biology of reproduction, 2007, 76(6): 992-1001.
修改评论