[1] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211.
[2] 中华人民共和国国家统计局. 中国统计年鉴.2021[M]. 北京: 中国统计出版, 2021: 178-178.
[3] 蔡璋, 蒋荣立, 罗时磊, 等. 煤泥的选择性絮凝研究[J]. 煤炭学报, 1994, 19(5): 513-520.
[4] 谢广元, 吴玲, 欧泽深, 等. 从细粒煤泥中回收精煤的分选与脱水技术研究[J]. 煤炭学报, 2004, 29(5): 602-605.
[5] 董宪姝, 杜圣星. 高灰细泥细粒煤浮选技术进展[J]. 选煤技术, 2012(5): 110-114.
[6] WILLS B A, FINCH J A. Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery[M]. Butterworth-Heinemann, 2015: 267-270.
[7] SOBHY A, TAO D. Nanobubble column flotation of fine coal particles and associated fundamentals[J]. International Journal of Mineral Processing, 2013, 124: 109-116.
[8] FENG D, ALDRICH C. Effect of particle size on flotation performance of complex sulphideores[J]. Minerals Engineering, 1999, 12(7): 721-731.
[9] 魏凌敖. 基于机器视觉的煤泥浮选加药控制系统研究[D]. 中国矿业大学, 2020.
[10] 刘敏, 张友飞, 郭芳余, 等. 表面粗糙度对煤泥可浮性的影响[J]. 煤炭科学技术, 2019, 47(10): 253-258.
[11] 史涛涛. 有关煤粉(泥) 可浮性评定方法的一些看法[J]. 煤炭加工与综合利用, 2014(3): 18-21.
[12] 贺萌, 由晓芳, 张伟, 等. 非离子表面活性剂在低阶煤表面的吸附特性及其对润湿性的影响[J]. 中国科技论文, 2017, 12(15): 1704-1710.
[13] XU G, CHEN Y P, EKSTEEN J, et al. Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors[J]. Science of The Total Environment, 2018, 639:1060-1076.
[14] DEGANELLO D, CROFT T, WILLIAMS A, et al. Numerical simulation of dynamic contact angle using a force based formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(16): 900-907.
[15] YOUNG T. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of The Royal Society of London, 1805(95): 65-87.
[16] 谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2001: 400-402.
[17] 郭志强. 桥联改性活化浮选硅孔雀石研究[D]. 昆明理工大学, 2019.
[18] MILLER J D, NALASKOWSKI J, ABDUL B, et al. Surface characteristics of kaolinite and other selected two layer silicate minerals[J]. The Canadian Journal of Chemical Engineering, 2007, 85(5): 617-624.
[19] 王延秋. 表面活性剂对煤尘润湿效果的定量化研究[D]. 西安科技大学, 2020.
[20] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 1-67.
[21] 李娇阳. 煤表面润湿性影响因素分析[D]. 河南理工大学, 2016.
[22] 彭扬东, 石彦平, 陈书雅, 等. 煤岩矿物组成与微观结构对其润湿性的影响规律研究[J]. 煤炭技术, 2018, 37(7): 112-114.
[23] 程卫民, 薛娇, 周刚, 等. 烟煤煤尘润湿性与无机矿物含量的关系研究[J]. 中国矿业大学学报, 2016, 45(3): 462-468.
[24] 张建国, 李红梅, 刘依婷, 等. 煤尘微细观润湿特性及抑尘剂研发初探——以平顶山矿区为例[J]. 煤炭学报, 2021, 46(3): 812-825.
[25] 孙银宇. 煤尘润湿性研究及降尘剂复配方案[D]. 安徽理工大学, 2014.
[26] CHEN Y, MA D M, XIA Y C, et al. Study on wettability and influencing factors of different macroscopic components in low rank coal[J]. Coal Science and Technology, 2019, 47(9): 97-104.
[27] 周刚, 薛娇, 程卫民, 等. 基于X 射线衍射实验的堆垛结构对煤尘润湿性的影响[J]. 工程科学学报, 2015, 37(12): 1535-1541.
[28] WANG X N, YUAN S J, JIANG B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology, 2019, 30(8): 1696-1708.
[29] GOSIEWSKA A, DRELICH J, LASKOWSKI J, et al. Mineral matter distribution on coal surface and its effect on coal wettability[J]. Journal of Colloid and Interface Science, 2002, 247(1): 107-116.
[30] MAHONEY S A, RUFFORD T E, DMYTERKO A S, et al. The effect of rank and lithotype on coal wettability and its application to coal relative permeability models[C]//SPE Asia Pacific Unconventional Resources Conference and Exhibition. OnePetro, 2015: 1-10.
[31] CRAWFORD R J, GUY D W, MAINWARING D E. The influence of coal rank and mineral matter content on contact angle hysteresis[J]. Fuel, 1994, 73(5): 742-746.
[32] GUTIERREZ-RODRIGUEZ J, PURCELL JR R, APLAN F. Estimating the hydrophobicity of coal[J]. Colloids and Surfaces, 1984, 12(1): 1-25.
[33] 杨静, 徐辉, 高建广, 等. 粒度对煤尘表面特性及润湿性的影响[J]. 煤矿安全, 2014, 45(10): 140-143.
[34] LI Q Z, LIN B Q, ZHAO S, et al. Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust[J]. Powder Technology, 2013, 233: 137-145.
[35] 谭烜昊, 王鹏飞, 易波波, 等. 煤尘润湿性能与粒径关系的实验研究[J]. 矿业工程研究, 2018, 33(2): 14-17.
[36] WANG P F, TAN X H, ZHANG L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying[J]. Process Safety and Environmental Protection, 2019, 132: 189-199.
[37] 张新花, 徐翠翠, 颜国强, 等. 不同煤种润湿性影响因素分析[J]. 煤矿安全, 2015, 46(1): 156-158.
[38] 安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45(12):4074-4086.
[39] MA Y L, ZHU X W. Mechanism of surfactant improve water wetting coal dust[J]. Coal Technology, 2015, 34(5): 195-198.
[40] XI X, JIANG S G, ZHANG W Q, et al. An experimental study on the effect of ionic liquids on the structure and wetting characteristics of coal[J]. Fuel, 2019, 244: 176-183.
[41] TIEN J C, KIM J. Respirable coal dust control using surfactants[J]. Applied Occupational and Environmental Hygiene, 1997, 12(12): 957-963.
[42] ORUMWENSE F O. Estimation of the wettability of coal from contact angles using coagulants and flocculants[J]. Fuel, 1998, 77(9): 1107-1111.
[43] 宋继伟, 彭扬东, 石彦平, 等. 贵州六盘水煤样润湿性影响因素研究[J]. 矿业安全与环保, 2018, 45(1): 16-19.
[44] XIA W C, NIU C K, LI Y F. Effect of heating process on the wettability of fine coals of various ranks[J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 475-478.
[45] SAVITSKYI D. Impact of the pH on angles of contact of water wettability of brown coal[J]. Journal of Water Chemistry and Technology, 2015, 37(4): 155-160.
[46] CHATURVEDI T, SCHEMBRE J, KOVSCEK A. Spontaneous imbibition and wettability characteristics of Powder River Basin coal[J]. International Journal of Coal Geology, 2009, 77(1): 34-42.
[47] DING C, NIE B S, YANG H, et al. Experimental research on optimization and coal dust suppression performance of magnetized surfactant solution[J]. Procedia Engineering, 2011, 26: 1314-1321.
[48] 马艳玲. 新型煤尘润湿剂的实验研究[D]. 安徽理工大学, 2016.
[49] 文金浩, 薛娇, 张磊, 等. 基于XRD 分析长焰煤润湿性与其灰分的关系[J]. 煤炭科学技术, 2015, 43(11): 83-86.
[50] 罗根华, 李博, 丁莹莹, 等. 煤尘化学组成及结构参数对煤尘润湿性的影响规律[J]. 大连交通大学学报, 2016, 37(3): 64-67.
[51] GAO J G, YANG J. Study of coal dust wettability based on multiple stepwise regression analysis[J]. Safety in Coal Mines, 2012, 43(1): 126-129.
[52] MURATA T. Studies on wettability of coal (2nd report) the relation between wettability of coal and coal elementary composition[J]. Journal of The Mining and Metallurgical Institute of Japan, 1981, 97(1123): 937-943.
[53] CARBONELL J G, MICHALSKI R S, MITCHELL T M. An overview of machine learning[J]. Machine Learning, 1983, 1: 3-23.
[54] YELIN I, SNITSER O, NOVICH G, et al. Personal clinical history predicts antibiotic resistance of urinary tract infections[J]. Nature Medicine, 2019, 25(7): 1143-1152.
[55] ROUGH K, DAI A M, ZHANG K, et al. Predicting inpatient medication orders from electronic health record data[J]. Clinical Pharmacology and Therapeutics, 2020, 108(1): 145-154.
[56] KHANAL S, FULTON J, KLOPFENSTEIN A, et al. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield[J]. Computers and Electronics in Agriculture, 2018, 153: 213-225.
[57] FILIPPI P, JONES E J, WIMALATHUNGE N S, et al. An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning[J]. Precision Agriculture, 2019, 20(5): 1015-1029.
[58] GOUDRA B, SINGH P M. Failure of sedasys: destiny or poor design[J]. Anesthesia and Analgesia, 2017, 124(2): 686-688.
[59] MIRSADEGHI M, BEHNAM H, SHALBAF R, et al. Characterizing awake and anesthetized states using a dimensionality reduction method[J]. Journal of Medical Systems, 2016, 40(1): 1-8.
[60] ASCARZA E, NETZER O, HARDIE B G. Some customers would rather leave without saying goodbye[J]. Marketing Science, 2018, 37(1): 54-77.
[61] LU S, XIAO L, DING M. A video-based automated recommender (VAR) system for garments[J]. Marketing Science, 2016, 35(3): 484-510.
[62] 任浩. 基于BP 神经网络的浓缩机药剂添加系统设计与应用[J]. 能源与节能, 2018(12): 178-179.
[63] 王靖千, 王然风, 付翔, 等. 基于彩色图像处理的浮选尾煤灰分软测量研究[J]. 煤炭工程, 2020, 52(3): 137-142.
[64] 王光辉. 煤泥浮选过程模型仿真及控制研究[D]. 中国矿业大学, 2012.
[65] 曹文龙. 基于LabVIEW 的煤泥浮选泡沫图像处理系统研究[D]. 中国矿业大学, 2016.
[66] 杨晓鸿, 郑诚, 王昊鑫. 浮选加药量预测模型的研究[J]. 选煤技术, 2020(1): 87-90.
[67] 曹珍贯. 重介选煤过程中重介质的密度预测控制研究[D]. 中国矿业大学, 2014.
[68] JORJANI E, MESROGHLI S, CHELGANI S C. Prediction of operational parameters effect on coal flotation using artificial neural network[J]. Journal of University of Science and Technology Beijing, 2008, 15(5): 528-533.
[69] ALI D, HAYAT M B, ALAGHA L, et al. An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal[J]. Advanced Powder Technology, 2018, 29(12): 3493-3506.
[70] RAO B V, GOPALAKRISHNA S. Hardgrove grindability index prediction using support vector regression[J]. International Journal of Mineral Processing, 2009, 91(1): 55-59.
[71] LI P S, XIONG Y H, YU D X, et al. Prediction of grindability with multivariable regression and neural network in Chinese coal[J]. Fuel, 2005, 84(18): 2384-2388.
[72] CEYLAN Z, SUNGUR B. Estimation of coal elemental composition from proximate analysis using machine learning techniques[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2020, 42(20): 2576-2592.
[73] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[74] CUTLER A, CUTLER D R, STEVENS J R. Random forests[J]. Ensemble Machine Learning, 2012: 157-175.
[75] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 2(3): 273-297.
[76] BHATI B S, RAI C. Analysis of support vector machine-based intrusion detection techniques[J]. Arabian Journal for Science and Engineering, 2020, 45(4): 2371-2383.
[77] ZHU H, LIU X, LU R, et al. Efficient and privacy-preserving online medical prediagnosis framework using nonlinear SVM[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 21(3): 838-850.
[78] 宋党育. 煤中矿物质的定量及赋存特征研究[M]. 徐州: 中国矿业大学出版社, 2011: 5-6.
[79] 雷绍民. 高岭石基纳米TiO2 复合光催化材料研究[D]. 武汉理工大学, 2006.
[80] 戴新枝. 浅谈350MW 机组混煤燃烧技术[J]. 上海节能, 2021(3): 303-308.
[81] 陈文敏. 煤质分析结果的定性与定量审查[M]. 北京: 煤炭工业出版社, 1994: 7-23.
[82] 史兴民. 控制煤中SO2 排放的技术对策分析[J]. 资源开发与市场, 2006, 22(5): 425-428.
[83] 刘蒙蒙. 乌鲁木齐矿区大倾角地层煤层气钻井井壁稳定性研究[J]. 中国煤层气, 2020, 17(4): 24-28.
[84] 郭明明. 煤泥浮选过程中气泡与煤及矿物质粘附几率的研究[D]. 太原理工大学, 2017.
[85] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
[86] TIBSHIRANI R. Bias, variance and prediction error for classification rules[M]. Citeseer, 1996: 1-17.
[87] QI X, LI X, LIANG Y, et al. Surface structure-dependent hydrophobicity/oleophilicity of pyrite and its influence on coal flotation[J]. Journal of Industrial and Engineering Chemistry, 2020, 87: 136-144.
[88] 周宝楠. 微细颗粒分离过程强化研究[D]. 哈尔滨工业大学, 2019.
修改评论