中文版 | English
题名

通过单毛囊多组学技术鉴定人类头发变白的多种机制

其他题名
IDENTIFICATION OF THE MULTIPLE MECHANISMS UNDERLYING HUMAN HAIR GRAYING BY SINGLE FOLLICLE MULTI-OMICS
姓名
姓名拼音
NIE Siyue
学号
11930156
学位类型
硕士
学位专业
071009 细胞生物学
学科门类/专业学位类别
07 理学
导师
靳文菲
导师单位
生物系
论文答辩日期
2022-04-28
论文提交日期
2022-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着年龄的增长,每个成年人或多或少都有些头发会变白。白发早生发生在青年人身上,对青年人的心理和社交有一定影响。已有研究表明,多种不同的因素可以导致头发变白:(1)在头发毛囊的毛乳头附近的毛发基质中,产生黑色素的黑色素细胞有损耗或功能有障碍;(2)基因毒性压力导致的黑色素干细胞自我更新有缺陷;(3)伴随活跃的毛发生长的氧化应激。虽然现有研究发现了毛发变白的多种机制,但是正常人的不同头发变白是否有相似的机制还不清楚;同时我们也不清楚来自不同人的头发变白是否更倾向于不同的机制。为了解决这些难题,我们进行了单毛囊转录组测序和单毛囊染色质可及性测序在单毛囊水平上分析这些毛囊在不同人之间的差异。

我们分析了来自 12 个志愿者的 123 个毛囊(97 个白发毛囊和 26 个黑发毛囊)的转录组。同时,我们分析了来自 13 个志愿者的 63 个毛囊(33个黑发毛囊和 30 个白发毛囊)的 ATAC-seq 数据。对所有单毛囊转录组样本进行方差分析发现志愿者间没有显著差异,黑发样本和白发样本之间有显著差别(P=0.012)。另一方面,通过单毛囊转录组分析,我们发现白发毛囊间差异显著大于黑发毛囊间差异(P<2.2×10-16)。黑发毛囊的基因表达模式相似而白发毛囊转录组差异较大可能意味着不同的头发变白有不同的基因表达改变,即多种的头发变白机制。主成分分析发现黑发分布相对集中,而白发分布比较离散,支持我们的头发变白机制多样性假说。我们在每个主成分中选取基因进行 GO (gene ontology)分析,通过这种分析鉴定的头发变白机制包括氧化磷酸化、角质化、细胞应激反应、细胞粘附和肌动蛋白丝改变等。但染色质可及性数据并未观察到明显差异。简言之,我们通过建立单毛囊多组学技术发现多种机制导致每个人的头发变白。

其他摘要

Every adult has more or less some gray hairs as they age. Gray hair occurs in young people, and has a certain impact on their major psychosocial and socioeconomic repercussion. It has been shown that a number of different factors can lead to hair graying: (1) depletion or dysfunction of melanocytes producing melanin in the hair matrix near the dermal papilla of the hair follicle (HF); (2) defective hair bulge Melanocyte Stem Cell self-maintenance via genotoxic stress; (3) oxidative stress associated with active hair growth. Although various mechanisms of hair graying have been found, it is not clear whether there are similar mechanisms in different gray hairs in normal people. It is also unknown if different people tend to have different mechanisms contributing to hair graying. To address these challenges, we performed single- follicle transcriptome sequencing and single-follicle chromatin accessibility sequencing to analyze the differences of these hair follicles at the single-follicle level.

We analyzed the transcriptomes of 123 hair follicles (97 gray hairs and 26 black hairs) from 12 volunteers. At the same time, we analyzed ATAC-seq data from 63 hair follicles (33 black hairs and 30 gray hairs) from 13 volunteers. From the analysis of variance of transcriptomic data, we found no significant difference among volunteers, and significant difference between black hairs and gray hairs (P=0.012). On the other hand, transcriptome analysis of single hair follicles showed that the difference among gray hair follicles was significantly greater than that among black hair follicles (P<2.2×10-16). Similar gene expression patterns in black hair follicles and large differences in the transcriptome of gray hair follicles may indicate that different hair graying have different gene expression changes, i.e., multiple hair graying mechanisms. Principal component analysis showed that the distribution of black hairs was relatively concentrated, while the distribution of gray hairs was relatively discrete, which supported our hypothesis of diversity of hair graying mechanism. GO analysis of genes selected from each principle component was performed to identify different mechanisms. The mechanisms of hair graying identified by this analysis included oxidative phosphorylation, keratinization, cellular responses to stress, cell-cell adhesion and actin filament-based process and others. However, the peak annotation and read distribution in the peaks between black hairs and gray hairs were similar. In short, we discovered the multiple mechanisms that caused hair graying by a single follicle multi-omics technique.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] BUFFOLI B, RINALDI F, LABANCA M, et al. The human hair: from anatomy to physiology[J]. Int J Dermatol, 2014, 53(3): 331-341.
[2] WELLE M M, WIENER D J. The Hair Follicle: A Comparative Review of Canine Hair Follicle Anatomy and Physiology[J]. Toxicol Pathol, 2016, 44(4): 564-574.
[3] WOLFRAM L J. Human hair: a unique physicochemical composite[J]. J Am Acad Dermatol, 2003, 48(6 Suppl): S106-114.
[4] KOCH S L, TRIDICO S R, BERNARD B A, et al. The biology of human hair: A multidisciplinary review[J]. Am J Hum Biol, 2020, 32(2): e23316.
[5] LIN K K, KUMAR V, GEYFMAN M, et al. Circadian clock genes contribute to the regulation of hair follicle cycling[J]. PLoS Genet, 2009, 5(7): e1000573.
[6] DASZCZUK P, MAZUREK P, PIECZONKA T D, et al. An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities[J]. Front Cell Dev Biol, 2020, 8: 595178.
[7] NISHIMURA E K. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation[J]. Pigment Cell Melanoma Res, 2011, 24(3): 401-410.
[8] SARIN K Y, ARTANDI S E. Aging, graying and loss of melanocyte stem cells[J]. Stem Cell Rev, 2007, 3(3): 212-217.
[9] MOHANTY S, KUMAR A, DHAWAN J, et al. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles[J]. J Cutan Aesthet Surg, 2013, 6(2): 90-92.
[10] OSAWA M. Melanocyte stem cells[M]. StemBook. Cambridge (MA). 2008.
[11] ADAMEYKO I, LALLEMEND F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes[J]. Cell Mol Life Sci, 2010, 67(18): 3037-3055.
[12] TOBIN D J. The cell biology of human hair follicle pigmentation[J]. Pigment Cell Melanoma Res, 2011, 24(1): 75-88.
[13] SERRE C, BUSUTTIL V, BOTTO J M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation[J]. Int J Cosmet Sci, 2018, 40(4): 328-347.
[14] ABDEL-MALEK Z A, KADEKARO A L, SWOPE V B. Stepping up melanocytes to the challenge of UV exposure[J]. Pigment Cell Melanoma Res, 2010, 23(2): 171-186.
[15] ISHIDA M, OHBAYASHI N, FUKUDA M. Rab1A regulates anterograde melanosome transport by recruiting kinesin-1 to melanosomes through interaction with SKIP[J]. Sci Rep, 2015, 5: 8238.
[16] TOBIN D J. A possible role for Langerhans cells in the removal of melanin from early catagen hair follicles[J]. Br J Dermatol, 1998, 138(5): 795-798.
[17] LAMASON R L, MOHIDEEN M A, MEST J R, et al. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans[J]. Science, 2005, 310(5755): 1782-1786.
[18] KUMAR A B, SHAMIM H, NAGARAJU U. Premature Graying of Hair: Review with Updates[J]. Int J Trichology, 2018, 10(5): 198-203.
[19] SHIN H, RYU H H, YOON J, et al. Association of premature hair graying with family history, smoking, and obesity: a cross-sectional study[J]. J Am Acad Dermatol, 2015, 72(2): 321-327.
[20] TOBIN D J, PAUS R. Graying: gerontobiology of the hair follicle pigmentary unit[J]. Exp Gerontol, 2001, 36(1): 29-54.
[21] KAUR K, KAUR R, BALA I. Therapeutics of premature hair graying: A long journey ahead[J]. J Cosmet Dermatol, 2019
[22] JO S K, LEE J Y, LEE Y, et al. Three Streams for the Mechanism of Hair Graying[J]. Ann Dermatol, 2018, 30(4): 397-401.
[23] COMMO S, GAILLARD O, BERNARD B A. Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath[J]. Br J Dermatol, 2004, 150(3): 435-443.
[24] ARCK P C, OVERALL R, SPATZ K, et al. Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage[J]. FASEB J, 2006, 20(9): 1567-1569.
[25] WOOD J M, DECKER H, HARTMANN H, et al. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair[J]. FASEB J, 2009, 23(7): 2065-2075.
[26] SLOMINSKI A, WORTSMAN J, PLONKA P M, et al. Hair follicle pigmentation[J]. J Invest Dermatol, 2005, 124(1): 13-21.
[27] SEIBERG M. Keratinocyte-melanocyte interactions during melanosome transfer[J]. Pigment Cell Res, 2001, 14(4): 236-242.
[28] JOSHI P G, NAIR N, BEGUM G, et al. Melanocyte-keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes[J]. Pigment Cell Res, 2007, 20(5): 380-384.
[29] SLOMINSKI A, PAUS R. Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth[J]. J Invest Dermatol, 1993, 101(1 Suppl): 90S-97S.
[30] NISHIMURA E K, GRANTER S R, FISHER D E. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche[J]. Science, 2005, 307(5710): 720-724.
[31] NISHIMURA E K, SUZUKI M, IGRAS V, et al. Key roles for transforming growth factor beta in melanocyte stem cell maintenance[J]. Cell Stem Cell, 2010, 6(2): 130-140.
[32] VAN NESTE D. Thickness, medullation and growth rate of female scalp hair are subject to significant variation according to pigmentation and scalp location during ageing[J]. Eur J Dermatol, 2004, 14(1): 28-32.
[33] CHOI H I, CHOI G I, KIM E K, et al. Hair greying is associated with active hair growth[J]. Br J Dermatol, 2011, 165(6): 1183-1189.
[34] SHIMOMURA Y, AOKI N, ROGERS M A, et al. Characterization of human keratin-associated protein 1 family members[J]. J Investig Dermatol Symp Proc, 2003, 8(1): 96-99.
[35] SCHWEIZER J, LANGBEIN L, ROGERS M A, et al. Hair follicle-specific keratins and their diseases[J]. Exp Cell Res, 2007, 313(10): 2010-2020.
[36] BIAN Y, WEI G, SONG X, et al. Global downregulation of pigmentation-associated genes in human premature hair graying[J]. Exp Ther Med, 2019, 18(2): 1155-1163.
[37] ZHANG B, MA S, RACHMIN I, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells[J]. Nature, 2020, 577(7792): 676-681.
[38] ROSENBERG A M, RAUSSER S, REN J, et al. Quantitative mapping of human hair greying and reversal in relation to life stress[J]. Elife, 2021, 10
[39] JEON S, KIM M M. The down-regulation of melanogenesis via MITF and FOXO1 signaling pathways in SIRT1 knockout cells using CRISPR/Cas9 system[J]. J Biotechnol, 2021, 342: 114-127.
[40] SENCZUK G, GUERRA L, MASTRANGELO S, et al. Fifteen Shades of Grey: Combined Analysis of Genome-Wide SNP Data in Steppe and Mediterranean Grey Cattle Sheds New Light on the Molecular Basis of Coat Color[J]. Genes (Basel), 2020, 11(8)
[41] JOOST S, ZEISEL A, JACOB T, et al. Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity[J]. Cell Syst, 2016, 3(3): 221-237 e229.
[42] BELOTE R L, LE D, MAYNARD A, et al. Human melanocyte development and melanoma dedifferentiation at single-cell resolution[J]. Nat Cell Biol, 2021, 23(9): 1035-1047.
[43] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4): 357-359.
[44] LIAO Y, SMYTH G K, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930.
[45] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357-360.
[46] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550.
[47] YEUNG K Y, RUZZO W L. Principal component analysis for clustering gene expression data[J]. Bioinformatics, 2001, 17(9): 763-774.
[48] MARINI F, BINDER H. pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components[J]. BMC Bioinformatics, 2019, 20(1): 331.
[49] WANG W, REN G, HONG N, et al. Exploring the changing landscape of cell-to-cell variation after CTCF knockdown via single cell RNA-seq[J]. BMC Genomics, 2019, 20(1): 1015.
[50] ZARET K S, CARROLL J S. Pioneer transcription factors: establishing competence for gene expression[J]. Genes Dev, 2011, 25(21): 2227-2241.
[51] PROST-SQUARCIONI C. [Histology of skin and hair follicle][J]. Med Sci (Paris), 2006, 22(2): 131-137.
[52] MORGAN B A. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle[J]. Cold Spring Harb Perspect Med, 2014, 4(7): a015180.

所在学位评定分委会
生物系
国内图书分类号
Q39
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/342800
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
聂思悦. 通过单毛囊多组学技术鉴定人类头发变白的多种机制[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930156-聂思悦-生物系.pdf(3699KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[聂思悦]的文章
百度学术
百度学术中相似的文章
[聂思悦]的文章
必应学术
必应学术中相似的文章
[聂思悦]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。