[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thincarbon films[J]. Science, 2004, 306(5696): 666-669.
[2] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. ChemicalReviews, 2010, 110(1): 132-145.
[3] GEIM A K, NOVOSELOV K S. The rise of graphene[M]//Nanoscience and technology: acollection of reviews from nature journals. World Scientific, 2010: 11-19.
[4] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Substrate-induced band gap ingraphene on hexagonal boron nitride: Ab initio density functional calculations[J]. PhysicalReview B, 2007, 76(7): 073103.
[5] SON Y W, COHEN M L, LOUIE S G. Energy gaps in graphene nanoribbons[J]. PhysicalReview Letters, 2006, 97(21): 216803.
[6] WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of twodimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[7] LI R, CHENG Y, HUANG W. Recent progress of Janus 2D transition metal chalcogenides:from theory to experiments[J]. Small, 2018, 14(45): 1802091.
[8] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
[9] LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: synthesis, transport propertiesand electronic applications[J]. Chemical Society Reviews, 2015, 44(9): 2732-2743.
[10] CONSTANTINESCU G, KUC A, HEINE T. Stacking in bulk and bilayer hexagonal boronnitride[J]. Physical Review Letters, 2013, 111(3): 036104.
[11] FUJIMOTO Y. Formation and physical properties of h − BN atomic layers: a first-principlesdensity-functional study[J]. Advances in Materials Science and Engineering, 2017, 2017.
[12] WU J, YUAN H, MENG M, et al. High electron mobility and quantum oscillations in nonencapsulated ultrathin semiconducting Bi2O2Se[J]. Nature Nanotechnology, 2017, 12(6): 530-534.
[13] ARORA H, ERBE A. Recent progress in contact, mobility, and encapsulation engineering ofInSe and GaSe[J]. InfoMat, 2021, 3(6): 662-693.
[14] SHANG J, PAN L, WANG X, et al. Tunable electric properties of bilayer InSe with differentinterlayer distances and external electric field[J]. Semiconductor Science and Technology, 2018,33(3): 034002.
[15] SUN Y, LUO S, ZHAO X G, et al. InSe: a two-dimensional material with strong interlayercoupling[J]. Nanoscale, 2018, 10(17): 7991-7998.46
[16] HONG Y L, LIU Z, WANG L, et al. Chemical vapor deposition of layered two-dimensionalMoSi2N4 materials[J]. Science, 2020, 369(6504): 670-674.
[17] NOVOSELOV K S. Discovery of 2D van der Waals layered MoSi2N4family[J]. NationalScience Review, 2020, 7(12): 1842-1844.
[18] MIRÓ P, AUDIFFRED M, HEINE T. An atlas of two-dimensional materials[J]. ChemicalSociety Reviews, 2014, 43(18): 6537-6554.
[19] GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459):419-425.
[20] CHEN C, CHEN X, DENG B, et al. Probing interlayer interaction via chiral phonons in layeredhoneycomb materials[J]. Physical Review B, 2021, 103(3): 035405.
[21] XIA J, YAN J, WANG Z, et al. Strong coupling and pressure engineering in WSe2 − MoSe2heterobilayers[J]. Nature Physics, 2021, 17(1): 92-98.
[22] LIU X Y, ZENG H D, ZHANG H, et al. Tunable electronic properties of two-dimensional type-I1T − SN2/ℎ𝐵𝑁 and type-II 1T − XN2/ℎ𝐵𝑁(X= Se, Te) van der Waals heterostructures fromfirst-principle study[J]. Applied Surface Science, 2021, 542: 148659.
[23] QIU X, JI W. Illuminating interlayer interactions[J]. Nature Materials, 2018, 17(3): 211-213.
[24] XIAO D, LIU G B, FENG W, et al. Coupled spin and valley physics in monolayers of MoS2and other group-VI dichalcogenides[J]. Physical Review Letters, 2012, 108(19): 196802.
[25] LIU Y, GAO Y, ZHANG S, et al. Valleytronics in transition metal dichalcogenides materials[J].Nano Research, 2019, 12(11): 2695-2711.
[26] PUMERA M, SOFER Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyondblack phosphorus[J]. Advanced Materials, 2017, 29(21): 1605299.
[27] ZHANG S, XIE M, LI F, et al. Semiconducting group 15 monolayers: a broad range of bandgaps and high carrier mobilities[J]. Angewandte Chemie, 2016, 128(5): 1698-1701.
[28] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a highhole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[29] QIAO J, KONG X, HU Z X, et al. High-mobility transport anisotropy and linear dichroism infew-layer black phosphorus[J]. Nature Communications, 2014, 5(1): 1-7.
[30] KAMAL C, EZAWA M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenicsystems[J]. Physical Review B, 2015, 91(8): 085423.
[31] GUO S, ZHANG Y, GE Y, et al. 2D V-V binary materials: status and challenges[J]. AdvancedMaterials, 2019, 31(39): 1902352.
[32] ZHU Z, GUAN J, TOMÁNEK D. Structural Transition in Layered As1−𝑥P𝑥 Compounds: AComputational Study[J]. Nano Letters, 2015, 15(9): 6042-6046.
[33] SHOJAEI F, KANG H S. Electronic structure and carrier mobility of two-dimensional 𝛼 arsenicphosphide[J]. The Journal of Physical Chemistry C, 2015, 119(34): 20210-20216.
[34] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences, 2005, 102(30): 10451-10453.47
[35] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced byliquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[36] ZHANG K, FENG Y, WANG F, et al. Two dimensional hexagonal boron nitride (2D-hBN):synthesis, properties and applications[J]. Journal of Materials Chemistry C, 2017, 5(46): 11992-12022.
[37] LI L, WU M. Binary compound bilayer and multilayer with vertical polarizations: twodimensional ferroelectrics, multiferroics, and nanogenerators[J]. ACS Nano, 2017, 11(6): 6382-6388.
[38] YASUDA K, WANG X, WATANABE K, et al. Stacking-engineered ferroelectricity in bilayerboron nitride[J]. Science, 2021, 372(6549): 1458-1462.
[39] VIZNER STERN M, WASCHITZ Y, CAO W, et al. Interfacial ferroelectricity by van der Waalssliding[J]. Science, 2021, 372(6549): 1462-1466.
[40] ZHAO X, LI Y, LIANG R, et al. Enhanced valley polarization at valence/conduction bandin transition-metal-doped WTe2 under strain force[J]. Applied Surface Science, 2020, 504:144367.
[41] ZHAO X, QIU B, HU G, et al. Transition-metal doping/adsorption induced valley polarizationin Janus WSSe: first-principles calculations[J]. Applied Surface Science, 2019, 490: 172-177.
[42] HE C C, XU S G, ZHAO Y J, et al. All-boron planar ferromagnetic structures: from clusters tomonolayers[J]. Nanoscale, 2021, 13(21): 9881-9887.
[43] HONG Y L, LIU Z, WANG L, et al. Chemical vapor deposition of layered two-dimensionalMoSi2N4 materials[J]. Science, 2020, 369(6504): 670-674.
[44] GUO J, LU Z, WANG K, et al. Large valley polarization in a novel two-dimensional semiconductor (𝐻 − 𝑍𝑟𝑋)2(X= Cl, Br, I)[J]. Journal of Physics: Condensed Matter, 2021, 34(7):075701.
[45] SUSNER M A, CHYASNAVICHYUS M, MCGUIRE M A, et al. Metal thio-and selenophosphates as multifunctional van der Waals layered materials[J]. Advanced Materials, 2017, 29(38): 1602852.
[46] CHITTARI B L, PARK Y, LEE D, et al. Electronic and magnetic properties of single-layerMPX3 metal phosphorous trichalcogenides[J]. Physical Review B, 2016, 94(18): 184428.
[47] WU Y, ZHOU J, KE C, et al. Strain modulation of the spin-valley polarization in monolayermanganese chalcogenophosphates alloys[J]. Journal of Physics: Condensed Matter, 2021, 33(29): 295503.
[48] JAZIRI N, BOUGHAMOURA A, MÜLLER J, et al. A comprehensive review of ThermoelectricGenerators: Technologies and common applications[J]. Energy Reports, 2020, 6: 264-287.
[49] BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: From history, a windowto the future[J]. Materials Science and Engineering: R: Reports, 2019, 138: 100501.
[50] YIN Z, SHENG C, HU R, et al. Strong interlayer coupling in two-dimensional PbSe with highthermoelectric performance[J]. Journal of Physics: Condensed Matter, 2021, 33(32): 325701.
[51] WANG F Q, GUO Y, WANG Q, et al. Exceptional thermoelectric properties of layered GeAs2[J]. Chemistry of Materials, 2017, 29(21): 9300-9307.48
[52] JIANG P, WANG C, CHEN D, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J].Physical Review B, 2019, 99(14): 144401.
[53] SIVADAS N, OKAMOTO S, XU X, et al. Stacking-dependent magnetism in bilayer CrI3[J].Nano Letters, 2018, 18(12): 7658-7664.
[54] KONG X, YOON H, HAN M J, et al. Switching interlayer magnetic order in bilayer CrI3 bystacking reversal[J]. Nanoscale, 2021, 13(38): 16172-16181.
[55] GUSAKOVA J, WANG X, SHIAU L L, et al. Electronic properties of bulk and monolayerTMDs: theoretical study within DFT framework (GVJ-2e method)[J]. Physica Status Solidi A,2017, 214(12): 1700218.
[56] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.
[57] GANATRA R, ZHANG Q. Few-layer MoS2: a promising layered semiconductor[J]. ACS Nano,2014, 8(5): 4074-4099.
[58] PADILHA J, PEELAERS H, JANOTTI A, et al. Nature and evolution of the band-edge statesin MoS2: From monolayer to bulk[J]. Physical Review B, 2014, 90(20): 205420.
[59] DAVIES F H, PRICE C J, TAYLOR N T, et al. Band alignment of transition metal dichalcogenide heterostructures[J]. Physical Review B, 2021, 103(4): 045417.
[60] ZHAO Y, QIAO J, YU P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2[J]. Advanced Materials, 2016, 28(12): 2399-2407.
[61] KASAI H, TOLBORG K, SIST M, et al. X-ray electron density investigation of chemical bonding in van der Waals materials[J]. Nature Materials, 2018, 17(3): 249-252.
[62] WANG V, LIU Y, KAWAZOE Y, et al. Role of interlayer coupling on the evolution of bandedges in few-layer phosphorene[J]. The Journal of Physical Chemistry Letters, 2015, 6(24):4876-4883.
[63] ZHANG G, HUANG S, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 1-9.
[64] WANG C, ZHOU X, ZHOU L, et al. Bethe-Slater-curve-like behavior and interlayer spinexchange coupling mechanisms in two-dimensional magnetic bilayers[J]. Physical Review B,2020, 102(2): 020402.
[65] TAKAO Y, ASAHINA H, MORITA A. Electronic structure of black phosphorus in tight bindingapproach[J]. Journal of the Physical Society of Japan, 1981, 50(10): 3362-3369.
[66] DONG S, ZHANG A, LIU K, et al. Ultralow-frequency collective compression mode and stronginterlayer coupling in multilayer black phosphorus[J]. Physical Review Letters, 2016, 116(8):087401.
[67] ZHANG G, HUANG S, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus[J]. Nature Communications, 2017, 8(1): 1-9.
[68] HUANG S, ZHANG G, FAN F, et al. Strain-tunable van der Waals interactions in few-layerblack phosphorus[J]. Nature Communications, 2019, 10(1): 1-7.
[69] HUANG S, LU Y, WANG F, et al. Layer-Dependent Pressure Effect on the Electronic Structureof 2D Black Phosphorus[J]. Physical Review Letters, 2021, 127(18): 186401.49
[70] VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica,1967, 34(1): 149-154.
[71] VILLEGAS C E, ROCHA A, MARINI A. Anomalous temperature dependence of the band gapin black phosphorus[J]. Nano Letters, 2016, 16(8): 5095-5101.
[72] ZHANG K, GUO Y, JI Q, et al. Enhancement of van der Waals Interlayer Coupling through PolarJanus MoSSe[J]. Journal of the American Chemical Society, 2020, 142(41): 17499-17507.
[73] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen Der Physik, 1927,389(20): 457-484.
[74] FOCK V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J].Zeitschrift für Physik, 1930, 61(1): 126-148.
[75] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B):B864.
[76] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J].Physical Review, 1965, 140(4A): A1133.
[77] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical review, 1964, 136(3B):B864.
[78] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J].Physical review, 1965, 140(4A): A1133.
[79] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J/OL]. Phys.Rev. B, 1992, 46: 6671-6687. https://link.aps.org/doi/10.1103/PhysRevB.46.6671.
[80] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J/OL]. Phys. Rev. Lett., 1996, 77: 3865-3868. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865.
[81] HAFNER J. Ab-initio simulations of materials using VASP: Density-functional theory andbeyond[J/OL]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21057. DOI: https://doi.org/10.1002/jcc.21057.
[82] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials[J/OL]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
[83] BLAHA P, SCHWARZ K, TRAN F, et al. WIEN2k: An APW+lo program for calculating theproperties of solids[J/OL]. The Journal of Chemical Physics, 2020, 152(7): 074101. https://doi.org/10.1063/1.5143061.
[84] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J/OL]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495. DOI: https://doi.org/10.1002/jcc.20495.
[85] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J/OL]. TheJournal of Chemical Physics, 2010, 132(15): 154104. https://doi.org/10.1063/1.3382344.50
[86] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion correcteddensity functional theory[J/OL]. Journal of Computational Chemistry, 2011, 32(7): 1456-1465.https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.21759. DOI: https://doi.org/10.1002/jcc.21759.
[87] KLIMEŠ J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waalsdensity functional[J/OL]. Journal of Physics: Condensed Matter, 2009, 22(2): 022201. https://doi.org/10.1088/0953-8984/22/2/022201.
[88] KLIMES J, BOWLER D, MICHAELIDES. Van der Waals density functionals applied to solids[J/OL]. Phys. Rev. B, 2011, 83: 195131. https://link.aps.org/doi/10.1103/PhysRevB.83.195131.
[89] DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): energyresolved visualization of chemical bonding in solids based on density-functional calculations[J/OL]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624. https://doi.org/10.1021/j100135a014.
[90] DERINGER V L, Tchougr 茅 effAndrei L., DRONSKOWSKI R. Crystal Orbital HamiltonPopulation (COHP) Analysis As Projected from Plane-Wave Basis Sets[J/OL]. The Journal ofPhysical Chemistry A, 2011, 115(21): 5461-5466. https://doi.org/10.1021/jp202489s.
[91] MAINTZ S, DERINGER V L, Tchougr 茅 effAndrei L., 等. Analytic projection from planewave and PAW wavefunctions and application to chemical-bonding analysis in solids[J/OL].Journal of Computational Chemistry, 2013, 34(29): 2557-2567. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23424. DOI: https://doi.org/10.1002/jcc.23424.
[92] NELSON R, ERTURAL C, GEORGE J, et al. LOBSTER: Local orbital projections,atomic charges, and chemical-bonding analysis from projector-augmented-wave-based densityfunctional theory[J/OL]. Journal of Computational Chemistry, 2020, 41(21): 1931-1940. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26353. DOI: https://doi.org/10.1002/jcc.26353.
[93] TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm withoutlattice bias[J/OL]. Journal of Physics: Condensed Matter, 2009, 21(8): 084204. https://doi.org/10.1088/0953-8984/21/8/084204.
[94] SANVILLE E, KENNY S D, SMITH R, et al. Improved grid-based algorithm for Bader chargeallocation[J/OL]. Journal of Computational Chemistry, 2007, 28(5): 899-908. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20575. DOI: https://doi.org/10.1002/jcc.20575.
[95] HENKELMAN G, ARNALDSSON A, JóNSSON H. A fast and robust algorithm for Baderdecomposition of charge density[J/OL]. Computational Materials Science, 2006, 36(3): 354-360. https://www.sciencedirect.com/science/article/pii/S0927025605001849. DOI: https://doi.org/10.1016/j.commatsci.2005.04.010.
[96] YU M, TRINKLE D R. Accurate and efficient algorithm for Bader charge integration[J/OL].The Journal of Chemical Physics, 2011, 134(6): 064111. https://doi.org/10.1063/1.3553716.
[97] SUN Z, YUAN K, CHANG Z, et al. Ultra-low thermal conductivity and high thermoelectricperformance of two-dimensional triphosphides (InP3, GaP3, SbP3𝑎𝑛𝑑SnP3): A comprehensivefirst-principles study[J]. Nanoscale, 2020, 12(5): 3330-3342.
[98] JING Y, MA Y, LI Y, et al. GeP3: A small indirect band gap 2D crystal with high carriermobility and strong interlayer quantum confinement[J]. Nano Letters, 2017, 17(3): 1833-1838.
[99] LIU H Y, YANG C L, WANG M S, et al. 2D AlP3 with high carrier mobility and tunable bandstructure[J]. Journal of Physics: Condensed Matter, 2019, 32(5): 055001.
[100] YAO S, ZHANG X, ZHANG Z, et al. 2D Triphosphides: SbP3𝑎𝑛𝑑GaP3 monolayer as promising photocatalysts for water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5948-5954.
[101] LIU J, LIU C S, YE X J, et al. Monolayer InP3 as a reversible anode material for ultrafast charging lithium-and sodium-ion batteries: a theoretical study[J]. Journal of Materials Chemistry A,2018, 6(8): 3634-3641.
[102] MIAO N, XU B, BRISTOWE N C, et al. Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer[J]. Journal of the American Chemical Society,2017, 139(32): 11125-11131.
[103] LU B, ZHENG X, LI Z. Two-Dimensional Lateral Heterostructures of Triphosphides: AlP3–GaP3 as a Promising Photocatalyst for Water Splitting[J]. ACS Applied Materials & Interfaces,2020, 12(48): 53731-53738.
[104] WEI S, WANG C, FAN S, et al. Strain tunable pudding-mold-type band structure and thermoelectric properties of SnP3 monolayer[J]. Journal of Applied Physics, 2020, 127(15): 155103.
[105] GONG P L, ZHANG F, HUANG L F, et al. Multifunctional two-dimensional semiconductors SnP3: universal mechanism of layer-dependent electronic phase transition[J]. Journal ofPhysics: Condensed Matter, 2018, 30(47): 475702.
[106] SUN S, MENG F, WANG H, et al. Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations[J].Journal of Materials Chemistry A, 2018, 6(25): 11890-11897.
[107] ZHANG S, NIU X, XIE Y, et al. High intrinsic ZT in InP3 monolayer at room temperature[J].Journal of Physics: Condensed Matter, 2019, 31(36): 365501.
[108] SLASSI A, GALI S M, PERSHIN A, et al. Interlayer bonding in two-dimensional materials:the special case of SnP3 and GeP3[J]. The Journal of Physical Chemistry Letters, 2020, 11(11):4503-4510.
[109] ZHANG S, YAN Z, LI Y, et al. Atomically thin arsenene and antimonene: semimetalsemiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie, 2015, 127(10):3155-3158.
[110] ZHU Z, GUAN J, TOMÁNEK D. Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study[J]. Physical Review B, 2015, 91(16):161404.
[111] BLÖCHL P E. Projector augmented-wave method[J/OL]. Phys. Rev. B, 1994, 50: 17953-17979.https://link.aps.org/doi/10.1103/PhysRevB.50.17953.
[112] LI Y, YANG S, LI J. Modulation of the Electronic Properties of Ultrathin Black Phosphorusby Strain and Electrical Field[J/OL]. The Journal of Physical Chemistry C, 2014, 118(41):23970-23976. https://doi.org/10.1021/jp506881v.
[113] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulombpotential[J/OL]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215. https://doi.org/10.1063/1.1564060.
[114] SCHIFERL D, BARRETT C. The crystal structure of arsenic at 4.2, 78 and 299 K[J]. Journalof Applied Crystallography, 1969, 2(1): 30-36.
[115] KINOMURA N, TERAO K, KIKKAWA S, et al. Synthesis and crystal structure of InP3[J].Materials Research Bulletin, 1983, 18(1): 53-57.
[116] GULLMAN J, OLOFSSON O. The crystal structure of SnP3 and a note on the crystal structureof GeP3[J]. Journal of Solid State Chemistry, 1972, 5(3): 441-445.
[117] PETKOV V, BILLINGE S, LARSON P, et al. Structure of nanocrystalline materials usingatomic pair distribution function analysis: Study of LiMoS2[J]. Physical Review B, 2002, 65(9): 092105.
[118] KECIK D, DURGUN E, CIRACI S. Stability of single-layer and multilayer arsenene and theirmechanical and electronic properties[J]. Physical Review B, 2016, 94(20): 205409.
[119] WANG D D, GONG X G, YANG J H. Unusual interlayer coupling in layered Cu-based ternarychalcogenides CuMCh2(M=Sb, Bi; Ch=S, Se)[J]. Nanoscale, 2021, 13(35): 14621-14627.
[120] LIU Y, WANG T, ROBERTSON J, et al. Band structure, band offsets, and intrinsic defectproperties of few-layer arsenic and antimony[J]. The Journal of Physical Chemistry C, 2020,124(13): 7441-7448.
[121] İYIKANAT F, TORUN E, SENGER R T, et al. Stacking-dependent excitonic properties ofbilayer blue phosphorene[J]. Physical Review B, 2019, 100(12): 125423.
[122] MOUNET N, GIBERTINI M, SCHWALLER P, et al. Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds[J]. Nature Nanotechnology, 2018, 13(3): 246-252.
修改评论