[1] GAO Y, XIE X, XIE J, et al. Recent development of electrolytes in lithium-ion rechargeable batteries [J]. Chinese Journal of Power Sources, 2003, 27(5): 479-483.
[2] SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shell nanostructures [J]. Nanoscale, 2011, 3(10): 3967-3983.
[3] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.
[4] MA H, LI W, MA R, et al. Research on hydrolytic stability of synthetic ester base oils [J]. Lubrication Engineering, 2016, 41(5): 53-58.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.
[6] LEE Y J, YI H, KIM W J, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes [J]. Science, 2009, 324(5930): 1051-1055.
[7] 杨绍斌,胡浩权. 锂离子电池 [J]. 辽宁工程技术大学学报(自然科学版), 2000, 06: 659-663.
[8] KIEBELE A, GRUNER G. Carbon nanotube based battery architecture [J]. Applied Physics Letters, 2007, 91(14):144104.
[9] CHIANG Y M. Building a Better Battery [J]. Science, 2010, 330(6010): 1485-1486.
[10] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303-4317.
[11] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[12] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603.
[13] ZHAO X S, FAN Z H, MA Y J, et al. Research Review on Electrical Energy Storage Technology [C]; Proceedings of the 36th Chinese Control Conference (CCC), Dalian, CHINA, 2017: 26-28.
[14] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.
[15] LEE B S. A review of recent advancements in electrospun anode materials to improve rechargeable lithium battery performance [J]. Polymers, 2020, 12(9): 2035-2076.
[16] LUO P, ZHENG C, HE J W, et al. Structural engineering in graphite-Based metal-ion batteries [J]. Advanced Functional Materials, 2022, 32(9): 2107277.
[17] YOSHIO M, WANG H Y, FUKUDA K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. Journal of Materials Chemistry, 2004, 14(11): 1754-1758.
[18] SUN H, HE X M, REN J G, et al. Hard carbon/lithium composite anode materials for Li-ion batteries [J]. Electrochimica Acta, 2007, 52(13): 4312-4316.
[19] MIAO Y L, ZONG J, LIU X J. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries [J]. Materials Letters, 2017, 188: 355-358.
[20] CHI Y, SUN Y. Research progress in Aanode materials for power Li-ion batteries [J]. Materials Review, 2012, 26(11A): 274-275.
[21] SUN W, CAI Z, ZHOU R, et al. Research progress of lithium zinc titanate as anode material for lithium ion batteries [J]. Applied Chemical Industry, 2020, 49(5): 1446-1456.
[22] KNAUTH P. Inorganic solid Li ion conductors: An overview [J]. Solid State Ionics, 2009, 180(14-16): 911-916.
[23] INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic-conductivity in lithium lanthanum titanate [J]. Solid State Communications, 1993, 86(10): 689-693.
[24] YANG Y, MCDOWELL M T, JACKSON A, et al. New Nanostructured Li2S/Silicon rechargeable battery with high specific energy [J]. Nano Letters, 2010, 10(4): 1486-1491.
[25] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future [J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
[26] SCROSATI B, HASSOUN J, SUN Y K. Lithium-ion batteries. A look into the future [J]. Energy & Environmental Science, 2011, 4(9): 3287-3295.
[27] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries [J]. Nano Today, 2012, 7(5): 414-429.
[28] MAVER U, ZNIDARSIC A, GABERSCEK M. An attempt to use atomic force microscopy for determination of bond type in lithium battery electrodes [J]. Journal of Materials Chemistry, 2011, 21(12): 4071-4075.
[29] SIMON G K, GOSWAMI T. Improving anodes for lithium ion batteries [J]. Metall Mater Transactions A, 2011, 42A(1): 231-238.
[30] CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode [J]. Advanced Science, 2016, 3(3): 1500213.
[31] SONI S K, SHELDON B W, XIAO X C, et al. Stress mitigation during the lithiation of patterned amorphous Si islands [J]. Journal of the Electrochemical Society, 2012, 159(1): A38-A43.
[32] KASAVAJJULA U, WANG C, APPLEBY A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. Journal of Power Sources, 2007, 163(2): 1003-1039.
[33] YANG J, WINTER M, BESENHARD J O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries [J]. Solid State Ionics, 1996, 90(1-4): 281-287.
[34] LI H. A high capacity nano-Si composite anode material for lithium rechargeable batteries [J]. Electrochemical and Solid-State Letters, 1999, 2(11): 547-551.
[35] MAZOUZI D, LESTRIEZ B, ROUÉ L, et al. Silicon composite electrode with high capacity and long cycle life [J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215-A218.
[36] WU S J, YANG J Y, YU B, et al. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2-3): 272-285.
[37] WANG W, KUMTA P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes [J]. ACS Nano, 2010, 4(4): 2233-2241.
[38] XU Q, LI J Y, SUN J K, et al. Watermelon-Inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes [J]. Advanced Energy Materials, 2017, 7(3): 1601481.
[39] DAI C L, SUN G Q, HU L Y, et al. Recent progress in graphene-based electrodes for flexible batteries [J]. Infomat, 2020, 2(3): 509-526.
[40] LUO J Y, ZHAO X, WU J S, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes [J]. Journal of Physical Chemistry Letters, 2012, 3(13): 1824-1829.
[41] WEI D, ASTLEY M R, HARRIS N, et al. Graphene nanoarchitecture in batteries [J]. Nanoscale, 2014, 6(16): 9536-9540.
[42] TOçOĞLU U, ALAF M, AKBULUT H. Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes [J]. Materials Chemistry and Physics, 2020, 240: 122160.
[43] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[44] PROSINI P P, LISI M, ZANE D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1): 45-51.
[45] WANG J J, SUN X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries [J].Energy & Environmental Science, 2012, 5(1): 5163-5185.
[46] TIAN L, YU H, ZHANG W, et al. The star material of lithium ion batteries,LiFePO4: basic properties, optimized modification and future prospects [J]. Materials Review, 2019, 33(11A): 3561-3579.
[47] RUI X H, JIN Y, FENG X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2011, 196(4): 2109-2114.
[48] JOHNSON I D, LUBKE M, WU O Y, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2016, 302: 410-418.
[49] 冯晓晗,孙杰. 磷酸铁锂正极材料改性研究进展 [J]. 储能科学与技术, 2022, 11(2): 467-486.
[50] YANG C, LI Y, LIU S, et al. Review of modification research of carbon coating on LiFePO4/C cathode material [J]. Chinese Journal of Power Sources, 2014, 38(6): 1170-1171.
[51] LI Y, WANG L, ZHANG K Y, et al. Optimized synthesis of LiFePO4 cathode material and its reaction mechanism during solvothermal [J]. Advanced Powder Technology, 2021, 32(6): 2097-2105.
[52] ZHANG H W, LI J Y, LUO L Q, et al. Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries [J]. Journal of Alloys and Compounds, 2021, 876:160210.
[53] TIAN M, ZHAN Y, YAN Y, et al. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812.
[54] SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation [J]. Energy Storage Materials, 2017, 6: 119-124.
[55] ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries [J]. Electrochimica Acta, 2017, 255: 212-219.
[56] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices [J]. Chemical Reviews, 2018, 118(18): 8936-8982.
[57] PARK Y, LEE S, KIM S-H, et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries [J]. RSC Advances, 2013, 3(31): 12625-12630.
[58] ARNOLD J, VOELKER G, SHARIATY A, et al. UV Coating Processes to Enhance Li Ion Battery Performance and Reduce Costs; proceedings of the 232nd Fall Meeting of the-Electrochemical-Society (ECS), National Harbor, MD, F Oct 01-05, 2017 [C]. Electrochemical Soc Inc: PENNINGTON, 2017.
[59] LIU Z, HAN S J, XU C, et al. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries [J]. RSC Advances, 2016, 6(72): 68371-68378.
[60] WANG Y X, XU Y F, MENG Q S, et al. Chemically bonded Sn nanoparticles using the crosslinked epoxy binder for high energy-density Li ion battery [J]. Advanced Materials Interfaces, 2016, 3(23):1600662.
[61] LIU G, ZHENG H, SONG X, et al. Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance [J]. Journal of the Electrochemical Society, 2012, 159(3): A214-A21.
[62] PENG L, YE C, TONG Q, et al. Research progress of replacing traditional PVDF binder with functional binder for lithium batteries [J]. Materials Review, 2021, 35(3A): 5174-5180.
[63] WANG Y, ZHANG L, QU Q T, et al. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries [J]. Electrochimica Acta , 2016, 191: 70-80.
[64] LI J, LEWIS R B, DAHN J R. Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries [J]. Electrochemical and Solid State Letters, 2007, 10(2): A17-A20.
[65] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder [J]. Electrochemical and Solid State Letters, 2005, 8(2): A100-A103.
[66] WEI L M, CHEN C X, HOU Z Y, et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries [J]. Scientific Reports, 2016, 6:19583.
[67] KOMABA S, SHIMOMURA K, YABUUCHI N, et al. Study on Polymer binders for high-capacity SiO negative electrode of Li-ion batteries [J]. Journal of Physical Chemistry C, 2011, 115(27): 13487-13495.
[68] MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic Acid [J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010.
[69] CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-3478.
[70] ZHAO X Y, YIM C H, DU N Y, et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries [J]. Journal of the Electrochemical Society, 2018, 165(5): A1110-A1121.
[71] RYOU M H, KIM J, LEE I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries [J]. Advanced Materials, 2013, 25(11): 1571-1576.
[72] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J]. Science, 2017, 357(6348): 279-283.
[73] HE J R, ZHONG H X, ZHANG L Z. Water-soluble binder PAALi with terpene resin emulsion as tackifier for LiFePO4 cathode [J]. Journal of Applied Polymer Science, 2018, 135(14):46132.
[74] ZHANG Q, SHA Z F, CUI X, et al. Incorporation of redox-active polyimide binder into LiFePO4 cathode for high-rate electrochemical energy storage [J]. Nanotechnology Reviews, 2020, 9(1): 1350-1358.
[75] HE J R, ZHONG H X, WANG J L, et al. Investigation on xanthan gum as novel water soluble binder for LiFePO4 cathode in lithium-ion batteries [J]. Journal of Alloys and Compounds, 2017, 714: 409-418.
[76] WANG Y-J, LI J, XU Z, et al. A tough and self-fusing elastomer tape [J]. Chemical Engineering Journal, 2021, 417: 127967.
[77] YAO D, XU H, WANG C, et al. Interpretation of the electrode binder standard for lithium ion battery [J]. Energy Storage Science and Technology, 2019, 8(2): 419-427.
[78] YAO D H, FENG J W, WANG J, et al. Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance [J]. Journal of Power Sources, 2020, 463:228188.
[79] LIU Y J, TAO X Y, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries [J]. Science, 2022, 375(6582): 739-745.
[80] QIAO L X, OTEO U, MARTINEZ-IBANEZ M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries [J]. Nature Materials.2022,21(4):455-462.
修改评论