中文版 | English
题名

2-甲氧基丙烯酸乙酯-丙烯酸共聚物的合成及其在锂离子电池中的应用

其他题名
RESEARCH ON SIOXANODE CONNECTED BY LIQUID METAL THREE-DIMENSIONAL CONDUCTIVE NETWORK
姓名
姓名拼音
LI Zenan
学号
12032566
学位类型
硕士
学位专业
0805 材料科学与工程
学科门类/专业学位类别
08 工学
导师
邓永红
导师单位
材料科学与工程系
外机构导师
宫清
外机构导师单位
比亚迪股份有限公司中央研究院
论文答辩日期
2022-05-13
论文提交日期
2022-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着锂离子电池的不断发展,电池中正负极材料也不断进行着迭代更新。在负极材料中,硅(Si)理论比容量高达4200 mAh/g,在地壳中含量丰富,被看作最具商业化潜力的石墨负极替代品。但是Si在脱嵌锂过程中会产生超过300%的体积变化,导致Si粒子的粉化和电极结构的破坏。目前商用粘结剂丁苯乳胶(SBR)对Si粘结强度低,力学强度低,难以有效缓解Si负极的膨胀效应。在正极材料中,磷酸铁锂(LFP)价格低廉,安全性好,循环稳定性高,被广泛应用于动力电池等领域。然而LFP正极选用聚偏氟乙烯(PVDF)作为粘结剂,需使N-甲基吡咯烷酮(NMP)作为溶剂,在涂布完成后还需对NMP进行回收。近年来NMPPVDF的价格水涨船高,使用油溶性的PVDF不仅会造成环境污染,且也增加了电池制造成本。因此,传统的粘结剂亟待更新,以满足当前正负极材料的要求。

本文以聚丙烯酸(PAA)和2-甲氧基丙烯酸乙酯(MEA)为反应单体合成一种新型粘结剂PAA-MEA,以改善锂离子电池SiO负极以及LFP正极的电化学性能。在SiO负极中,PAA-MEA聚合物玻璃化温度更低,更加柔韧,有助于缓解SiO负极循环过程中的膨胀。在LFP正极中,PAA-MEA作为水溶性粘结剂,具有环保和节约成本的优势。主要研究成果如下:

PAA-MEA粘结剂提高了正负极极片的柔韧性,平均剥离力超过5 N,具有比PAAPVDF更加优异的力学性能。负极测试中,相比于PAAPAA-MEA为粘结剂制备的SiO负极半电池的可逆比容量和容量保持率显著提升,0.1 C电流密度循环120圈后可逆比容量为1811 mAh/g,容量保持率为66%。进一步控制PAA-MEA合成的引发剂用量,结果表明引发剂用量为0.1%PAA-MEA-0.1%分子量更高,电化学性能进一步提升,120圈后循环容量保持率为69.4%LFP正极测试中,以PAA-MEA为粘结剂,循环140圈后放电比容量为143 mAh/g容量保持率为92.8%,在引入水体系的同时保持了优异的电化学性能。

本文通过对PAA聚合物的改性,增强了聚合物粘结剂的柔韧性和结构稳定性,采用水溶剂体系降低了电极制备成本,对开发高性能的锂离子电池粘结剂开辟了新的途径。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07-03
参考文献列表

[1] GAO Y, XIE X, XIE J, et al. Recent development of electrolytes in lithium-ion rechargeable batteries [J]. Chinese Journal of Power Sources, 2003, 27(5): 479-483.

[2] SU L W, JING Y, ZHOU Z. Li ion battery materials with core-shell nanostructures [J]. Nanoscale, 2011, 3(10): 3967-3983.

[3] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.

[4] MA H, LI W, MA R, et al. Research on hydrolytic stability of synthetic ester base oils [J]. Lubrication Engineering, 2016, 41(5): 53-58.

[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.

[6] LEE Y J, YI H, KIM W J, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes [J]. Science, 2009, 324(5930): 1051-1055.

[7] 杨绍斌,胡浩权. 锂离子电池 [J]. 辽宁工程技术大学学报(自然科学版), 2000, 06: 659-663.

[8] KIEBELE A, GRUNER G. Carbon nanotube based battery architecture [J]. Applied Physics Letters, 2007, 91(14):144104.

[9] CHIANG Y M. Building a Better Battery [J]. Science, 2010, 330(6010): 1485-1486.

[10] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303-4317.

[11] GOODENOUGH J B, PARK K S. The Li-Ion Rechargeable Battery: A Perspective [J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.

[12] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603.

[13] ZHAO X S, FAN Z H, MA Y J, et al. Research Review on Electrical Energy Storage Technology [C]; Proceedings of the 36th Chinese Control Conference (CCC), Dalian, CHINA, 2017: 26-28.

[14] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.

[15] LEE B S. A review of recent advancements in electrospun anode materials to improve rechargeable lithium battery performance [J]. Polymers, 2020, 12(9): 2035-2076.

[16] LUO P, ZHENG C, HE J W, et al. Structural engineering in graphite-Based metal-ion batteries [J]. Advanced Functional Materials, 2022, 32(9): 2107277.

[17] YOSHIO M, WANG H Y, FUKUDA K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. Journal of Materials Chemistry, 2004, 14(11): 1754-1758.

[18] SUN H, HE X M, REN J G, et al. Hard carbon/lithium composite anode materials for Li-ion batteries [J]. Electrochimica Acta, 2007, 52(13): 4312-4316.

[19] MIAO Y L, ZONG J, LIU X J. Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries [J]. Materials Letters, 2017, 188: 355-358.

[20] CHI Y, SUN Y. Research progress in Aanode materials for power Li-ion batteries [J]. Materials Review, 2012, 26(11A): 274-275.

[21] SUN W, CAI Z, ZHOU R, et al. Research progress of lithium zinc titanate as anode material for lithium ion batteries [J]. Applied Chemical Industry, 2020, 49(5): 1446-1456.

[22] KNAUTH P. Inorganic solid Li ion conductors: An overview [J]. Solid State Ionics, 2009, 180(14-16): 911-916.

[23] INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic-conductivity in lithium lanthanum titanate [J]. Solid State Communications, 1993, 86(10): 689-693.

[24] YANG Y, MCDOWELL M T, JACKSON A, et al. New Nanostructured Li2S/Silicon rechargeable battery with high specific energy [J]. Nano Letters, 2010, 10(4): 1486-1491.

[25] SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future [J]. Journal of Power Sources, 2010, 195(9): 2419-2430.

[26] SCROSATI B, HASSOUN J, SUN Y K. Lithium-ion batteries. A look into the future [J]. Energy & Environmental Science, 2011, 4(9): 3287-3295.

[27] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries [J]. Nano Today, 2012, 7(5): 414-429.

[28] MAVER U, ZNIDARSIC A, GABERSCEK M. An attempt to use atomic force microscopy for determination of bond type in lithium battery electrodes [J]. Journal of Materials Chemistry, 2011, 21(12): 4071-4075.

[29] SIMON G K, GOSWAMI T. Improving anodes for lithium ion batteries [J]. Metall Mater Transactions A, 2011, 42A(1): 231-238.

[30] CHENG X B, ZHANG R, ZHAO C Z, et al. A review of solid electrolyte interphases on lithium metal anode [J]. Advanced Science, 2016, 3(3): 1500213.

[31] SONI S K, SHELDON B W, XIAO X C, et al. Stress mitigation during the lithiation of patterned amorphous Si islands [J]. Journal of the Electrochemical Society, 2012, 159(1): A38-A43.

[32] KASAVAJJULA U, WANG C, APPLEBY A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. Journal of Power Sources, 2007, 163(2): 1003-1039.

[33] YANG J, WINTER M, BESENHARD J O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries [J]. Solid State Ionics, 1996, 90(1-4): 281-287.

[34] LI H. A high capacity nano-Si composite anode material for lithium rechargeable batteries [J]. Electrochemical and Solid-State Letters, 1999, 2(11): 547-551.

[35] MAZOUZI D, LESTRIEZ B, ROUÉ L, et al. Silicon composite electrode with high capacity and long cycle life [J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215-A218.

[36] WU S J, YANG J Y, YU B, et al. Nano/Micro Structured Silicon-Based Negative Materials [J]. Progress in Chemistry, 2018, 30(2-3): 272-285.

[37] WANG W, KUMTA P N. Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes [J]. ACS Nano, 2010, 4(4): 2233-2241.

[38] XU Q, LI J Y, SUN J K, et al. Watermelon-Inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes [J]. Advanced Energy Materials, 2017, 7(3): 1601481.

[39] DAI C L, SUN G Q, HU L Y, et al. Recent progress in graphene-based electrodes for flexible batteries [J]. Infomat, 2020, 2(3): 509-526.

[40] LUO J Y, ZHAO X, WU J S, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes [J]. Journal of Physical Chemistry Letters, 2012, 3(13): 1824-1829.

[41] WEI D, ASTLEY M R, HARRIS N, et al. Graphene nanoarchitecture in batteries [J]. Nanoscale, 2014, 6(16): 9536-9540.

[42] TOçOĞLU U, ALAF M, AKBULUT H. Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes [J]. Materials Chemistry and Physics, 2020, 240: 122160.

[43] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.

[44] PROSINI P P, LISI M, ZANE D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1): 45-51.

[45] WANG J J, SUN X L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries [J].Energy & Environmental Science, 2012, 5(1): 5163-5185.

[46] TIAN L, YU H, ZHANG W, et al. The star material of lithium ion batteries,LiFePO4: basic properties, optimized modification and future prospects [J]. Materials Review, 2019, 33(11A): 3561-3579.

[47] RUI X H, JIN Y, FENG X Y, et al. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2011, 196(4): 2109-2114.

[48] JOHNSON I D, LUBKE M, WU O Y, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries [J]. Journal of Power Sources, 2016, 302: 410-418.

[49] 冯晓晗,孙杰. 磷酸铁锂正极材料改性研究进展 [J]. 储能科学与技术, 2022, 11(2): 467-486.

[50] YANG C, LI Y, LIU S, et al. Review of modification research of carbon coating on LiFePO4/C cathode material [J]. Chinese Journal of Power Sources, 2014, 38(6): 1170-1171.

[51] LI Y, WANG L, ZHANG K Y, et al. Optimized synthesis of LiFePO4 cathode material and its reaction mechanism during solvothermal [J]. Advanced Powder Technology, 2021, 32(6): 2097-2105.

[52] ZHANG H W, LI J Y, LUO L Q, et al. Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries [J]. Journal of Alloys and Compounds, 2021, 876:160210.

[53] TIAN M, ZHAN Y, YAN Y, et al. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812.

[54] SUN Y M, LI Y B, SUN J, et al. Stabilized Li3N for efficient battery cathode prelithiation [J]. Energy Storage Materials, 2017, 6: 119-124.

[55] ZHAN Y J, YU H L, BEN L B, et al. Using Li2S to compensate for the loss of active lithium in Li-ion batteries [J]. Electrochimica Acta, 2017, 255: 212-219.

[56] CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices [J]. Chemical Reviews, 2018, 118(18): 8936-8982.

[57] PARK Y, LEE S, KIM S-H, et al. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries [J]. RSC Advances, 2013, 3(31): 12625-12630.

[58] ARNOLD J, VOELKER G, SHARIATY A, et al. UV Coating Processes to Enhance Li Ion Battery Performance and Reduce Costs; proceedings of the 232nd Fall Meeting of the-Electrochemical-Society (ECS), National Harbor, MD, F Oct 01-05, 2017 [C]. Electrochemical Soc Inc: PENNINGTON, 2017.

[59] LIU Z, HAN S J, XU C, et al. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries [J]. RSC Advances, 2016, 6(72): 68371-68378.

[60] WANG Y X, XU Y F, MENG Q S, et al. Chemically bonded Sn nanoparticles using the crosslinked epoxy binder for high energy-density Li ion battery [J]. Advanced Materials Interfaces, 2016, 3(23):1600662.

[61] LIU G, ZHENG H, SONG X, et al. Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance [J]. Journal of the Electrochemical Society, 2012, 159(3): A214-A21.

[62] PENG L, YE C, TONG Q, et al. Research progress of replacing traditional PVDF binder with functional binder for lithium batteries [J]. Materials Review, 2021, 35(3A): 5174-5180.

[63] WANG Y, ZHANG L, QU Q T, et al. Tailoring the interplay between ternary composite binder and graphite anodes toward high-rate and long-life Li-ion batteries [J]. Electrochimica Acta , 2016, 191: 70-80.

[64] LI J, LEWIS R B, DAHN J R. Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries [J]. Electrochemical and Solid State Letters, 2007, 10(2): A17-A20.

[65] LIU W R, YANG M H, WU H C, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder [J]. Electrochemical and Solid State Letters, 2005, 8(2): A100-A103.

[66] WEI L M, CHEN C X, HOU Z Y, et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries [J]. Scientific Reports, 2016, 6:19583.

[67] KOMABA S, SHIMOMURA K, YABUUCHI N, et al. Study on Polymer binders for high-capacity SiO negative electrode of Li-ion batteries [J]. Journal of Physical Chemistry C, 2011, 115(27): 13487-13495.

[68] MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: Polyacrylic Acid [J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010.

[69] CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-3478.

[70] ZHAO X Y, YIM C H, DU N Y, et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries [J]. Journal of the Electrochemical Society, 2018, 165(5): A1110-A1121.

[71] RYOU M H, KIM J, LEE I, et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries [J]. Advanced Materials, 2013, 25(11): 1571-1576.

[72] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries [J]. Science, 2017, 357(6348): 279-283.

[73] HE J R, ZHONG H X, ZHANG L Z. Water-soluble binder PAALi with terpene resin emulsion as tackifier for LiFePO4 cathode [J]. Journal of Applied Polymer Science, 2018, 135(14):46132.

[74] ZHANG Q, SHA Z F, CUI X, et al. Incorporation of redox-active polyimide binder into LiFePO4 cathode for high-rate electrochemical energy storage [J]. Nanotechnology Reviews, 2020, 9(1): 1350-1358.

[75] HE J R, ZHONG H X, WANG J L, et al. Investigation on xanthan gum as novel water soluble binder for LiFePO4 cathode in lithium-ion batteries [J]. Journal of Alloys and Compounds, 2017, 714: 409-418.

[76] WANG Y-J, LI J, XU Z, et al. A tough and self-fusing elastomer tape [J]. Chemical Engineering Journal, 2021, 417: 127967.

[77] YAO D, XU H, WANG C, et al. Interpretation of the electrode binder standard for lithium ion battery [J]. Energy Storage Science and Technology, 2019, 8(2): 419-427.

[78] YAO D H, FENG J W, WANG J, et al. Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance [J]. Journal of Power Sources, 2020, 463:228188.

[79] LIU Y J, TAO X Y, WANG Y, et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries [J]. Science, 2022, 375(6582): 739-745.

[80] QIAO L X, OTEO U, MARTINEZ-IBANEZ M, et al. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries [J]. Nature Materials.2022,21(4):455-462.

所在学位评定分委会
创新创业学院
国内图书分类号
TM911.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343005
专题创新创业学院
推荐引用方式
GB/T 7714
李泽南. 2-甲氧基丙烯酸乙酯-丙烯酸共聚物的合成及其在锂离子电池中的应用[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032566-李泽南-创新创业学院.(3659KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李泽南]的文章
百度学术
百度学术中相似的文章
[李泽南]的文章
必应学术
必应学术中相似的文章
[李泽南]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。