中文版 | English
题名

光纤光栅形态传感器关键技术研究

其他题名
RESEARCH ON KEY TECHNOLOGIES OFSHAPE SENSOR BASED ON FBG
姓名
姓名拼音
CHEN Yutao
学号
12032569
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
宋章启
导师单位
创新创业学院
外机构导师单位
南方科技大学
论文答辩日期
2022-05-13
论文提交日期
2022-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

光纤布拉格光栅因其具有耐腐蚀、抗电磁干扰、易与基体结合等优势,在结构健康监测、形态传感等领域得到广泛的发展。利用光纤光栅进行海底滑坡监测与数据采集具有广阔的应用前景,目前陆地滑坡监测有很多成熟的技术,但是由于海底滑坡应用环境特殊,当前陆上滑坡监测技术都无法在海底使用。本文针对运用于海底滑坡监测场合,开展一种基于光纤布拉格光栅的全向型形态传感器研究。

论文首先开展了基于光纤光栅的全向形态传感器的传感机理研究,针对光纤光栅在基体上的布设形式,设计了一种将3组光纤光栅串沿基体周向120°等间距布设封装传感器结构,理论分析了3光栅螺旋布设结构弯曲响应特性,对影响螺旋式布设封装的传感器弯曲应变灵敏度影响因素进行仿真分析,得到适合海底滑坡监测传感器封装最佳方式为平行布设。

在综合考虑传感器贯入过程中机械性能要求、工作环境的耐压要求和光、机电复合集成要求的基础上,完成了光纤光栅全向形态传感器的结构设计与研制,完成了传感器的弯曲响应系数与温度灵敏度标定,针对应变-温度交叉敏感问题,提出采用参考光栅法剔除温度对光栅中心波长偏移量的影响。开展了传感器耐压测试,结果表明传感器可承受3MPa压强且密封性良好。进行传感器稳定性测试,结果表明传感器长期稳定性良好。

开展了全向形态传感器形态重建算法与标定技术研究,采用标准曲率块和高精度分度旋转方法对各传感位置的响应矩阵进行了测试标定,并在此基础上进行了全向形态测量性能研究360度方向上对传感器的形态进行了测量,形态重建结果与实际形态符合度较好,形态重建误差使用均方根误差(RMSE)相对传感器有效传感长度大小,最大误差为0.19%,平均误差为0.08%,各方向测试结果表明传感器的形态重建一致性效果良好。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-07
参考文献列表

[1] Floris I , Adam J M , PA Calderón, et al. Fiber Optic Shape Sensors: A comprehensive review[J]. Optics and Lasers in Engineering, 2021, 139.
[2] 沈林勇, 肖海, 钱晋武,等. 智能内窥镜的形态重建和可视化方法研究[J]. 仪器仪表学报, 2014, 35(12):6.
[3] Koch E , Dietzel A . Surface reconstruction by means of a flexible sensor array[J]. Sensors & Actuators A Physical, 2017:S092442471730938X.
[4] A. Dementyev, H. L. Kao, J. A. Paradiso. SensorTape: Modular and Programmable 3D-Aware Dense Sensor Network on a Tape,2015
[5] C. Rendl, D. Kim, S. Fanelloet al. FlexSense: A Transparent Self-Sensing Deformable Surface,2014
[6] K. Stollenwerk, J. Müllers, J. Mülleret al. Evaluating an Accelerometer-based System for Spine Shape Monitoring. Springer, Cham,2018
[7] Y. J. Cha, W. Choi, O. Büyüköztürk. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering,2017
[8] NetAnswer. Radar-based measurement of deflections on bridges and large structures: ambient vibration tests and operational modal analysis[J]. Revue Fran§aise De Gnie Civil, 2010, 14(4):495-516.
[9] Wu H . Tunnel Monitoring and Measuring System Using Mobile Laser Scanning: Design and Deployment[J]. Remote Sensing, 2020, 12.
[10] Zheng D , Cai Z , Floris I , et al. Temperature-insensitive optical tilt sensor based on a single eccentric-core fiber Bragg grating[J]. Optics Letters, 2019, 44(22):5570.
[11] Stark T D , Choi H . Slope inclinometers for landslides[J]. Landslides, 2008, 5(3):339-350.
[12] Khan F , Denasi A , Barrera D , et al. Multi-Core Optical Fibers With Bragg Gratings as Shape Sensor for Flexible Medical Instruments[J]. IEEE sensors journal, 2019, 19(14):5878-5884.
[13] Razavi, Mehdi, Song, et al. Fiber Bragg grating based arterial localization device[J]. Smart Materials & Structures, 2017.
[14] Y. L. Park, S. Elayaperumal, B. Danielet al. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions. IEEE ASME Trans Mechatron,2010,15(6):906-915
[15] Y. L. Park, R. J. Black, B. Moslehiet al. Steerable Shape Sensing Biopsy Needle,2015
[16] Jibson R W . Methods for assessing the stability of slopes during earthquakes—A retrospective[J]. Engineering Geology, 2011.
[17] Liu H L , Zhu Z W , Zheng Y , et al. Experimental study on an FBG strain sensor[J]. Optical Fiber Technology, 2018, 40(JAN.):144-151.
[18] Yi X , Qian J , Shen L , Zhang Y , Zhang Z . An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array. In: 2007 Int. Conf. Inf. Acquis.. IEEE; 2007. p. 227–32 .
[19] 郭永兴.基于光纤光栅的高陡边坡及危岩落石监测技术与应用研究[D].武汉理工大学.
[20] Ma Z,Chen X . Fiber Bragg Gratings Sensors for Aircraft Wing Shape Measurement: Recent Applications and Technical Analysis[J]. Sensors, 2018, 19(1).
[21] Murayama H , Tachibana K , Hirano Y , et al. Distributed strain and load monitoring of 6 m composite wing structure by FBG arrays and long-length FBGs[C]// Ofs International Conference on Optical Fiber Sensors. International Society for Optics and Photonics, 2012:84212D-84212D-4.
[22] Yi J , Zhang H , Qiao X , et al. Shape monitoring for wing structure using fiber Bragg grating sensors[C]// Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference on. IEEE, 2012.
[23] Pedro Ferreira A, Elsa Caetano A, Pedro Pinto B. Real-time flying shape detection of yacht sails based on strain measurements. Ocean Engineering,2017, 131:48-56.
[24] 闻琛阳.光纤光栅压力传感器实验研究[D].武汉理工大学,2007.
[25] 胡兴柳,梁大开,曾捷,等.长周期光纤光栅对结构参数的敏感特性[J]. 光电子.激光, 2011, 22(9):6.
[26] Q. Wu, Y. Okabe, and F. Yu, “Ultrasonic Structural Health Monitoring Using Fiber Bragg Grating,” p. 26, 2018.
[27] 黎延彪.光纤传感器及其应用技术[M]. 武汉: 武汉大学出版社, 2008.
[28] 陈勇,刘焕淋 著. 光纤光栅传感技术与应用[M]. 北京:科学出版社, 2018
[29] Yoo K W , Han Y G . Sensitivity Improvement in Fiber Bragg Grating Sensors Using All-Fiber Weak Value Amplification Based on Optical Attenuation[J]. Journal of Lightwave Technology, 2017.
[30] 冷卓燕.用于水库水位实时监测的FBG传感器研究[D].武汉理工大学, 2013.
[31] 廖延彪.光纤光学[M].北京: 清华大学出版社, 2000.
[32] 薛亚萍.液晶电视力学显示特性研究[D]. 合肥工业大学.
[33] 金秀梅.光纤光栅应变、温度交叉敏感问题研究现状分析[J].石家庄铁路职业技术学院学报,2011,10(02):53-56.
[34] James S W , Dockney M L , Tatam R P . Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors[J]. Electronics Letters, 1996, 32(12):1133-1134.
[35] O Frazão, Santos J L . Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres[J]. Journal of Optics A Pure & Applied Optics, 2004, 6(6):553.
[36] 董兴法,付圣贵,姜莉,开桂云,董孝义.用于结构损伤诊断的实用型光纤光栅传感器研究[J].光子学报,2004(01):28-30.
[37] 黄崇武.基于光纤应变的海底电缆形态传感技术研究[D].华北电力大学,2021.DOI:10.27139/d.cnki.ghbdu.2021.000186.
[38] 梅向明,黄敬之.微分几何[M].北京: 高等教育出版社, 2008.
[39] Idriss R L et al. Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges. Smart Materials and Structures, 1998, 7(2): 209-216.
[40] C. I. Merzbacher, et al, Fiber optic sensors in concrete structures: a review, Smart Materials and Structures, Vol 5, 1996. p196-208
[41] 任亮.光纤光栅传感技术在结构健康检测中的应用.大连理工大学学位论文,2008
[42] 周振宇,张钰民,孟凡勇,吴越,庄炜,祝连庆.面向电机测温的嵌套结构管式光纤光栅传感器[J].半导体光电,2021,42(02):201-206.DOI:10.16818/j.issn1001-5868.2021.02.009.
[43] Seo S Y ,Park J H , Yun H D, et al. Strain Transfer of Fiber Bragg Grating Sensor Externally Bonded to FRP Strip for Structural Monitoring after Reinforcement[J]. Materials, 2021, 14(16):4382.
[44] 谭跃刚,陈宜炀,李瑞亚,毛健.一种基片式光纤光栅应变增敏传感器[J].传感技术学报,2018,31(05):664-669.
[45] 王宇,刘铁根,刘丽娜,江俊峰.合金钢封装光纤Bragg光栅传感器传感特性的研究[J].光学技术,2006(06):923-925.
[46] 朱伟涛,孙广开,何彦霖,等.螺旋布设光纤光栅的软体操作器形态传感方法[J]. 半导体光电, 2020, 41(6):7.
[47] 杨濠琨,尤贺,贺静,韩笑笑,张锦龙.机器人柔性触手形态的光纤传感及重建方法[J].激光与红外,2020,50(10):1246-1252.
[48] 王雀,谭头文.紫外光固化涂料对ABS力学性能的影响[C].塑料涂料及涂装技术研讨会. 2009.
[49] 李爱群,周广东.光纤Bragg光栅传感器测试技术研究进展与展望(Ⅰ):应变、温度测试[J].东南大学学报(自然科学版),2009,39(06):1298-1306.
[50] 张伦伟,钱晋武,沈林勇,等.光纤光栅大曲率传感器的试验研究[J].仪表技术与传感器,2003(8):1-2,5. DOI:10.3969/j.issn.1002-1841.2003.08.001.

所在学位评定分委会
创新创业学院
国内图书分类号
TN212
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343007
专题创新创业学院
推荐引用方式
GB/T 7714
陈宇涛. 光纤光栅形态传感器关键技术研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032569-陈宇涛-创新创业学院.(5779KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈宇涛]的文章
百度学术
百度学术中相似的文章
[陈宇涛]的文章
必应学术
必应学术中相似的文章
[陈宇涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。