[1] VAN DEN BERG HA, WOOLDRIDGE L, LAUGEL B, et al. Coreceptor CD8-drivenmodulation of T cell antigen receptor specificity[J] . Journal of TheoreticalBiology,2007,249(2):395-408.
[2] ESENSTEN JONATHAN H, HELOU YNES A, CHOPRA G, et al. CD28costimulation: from mechanism to therapy[J]. Immunity,2016,44(5):973-988.
[3] HUPPA JB, DAVIS MM. T-cell-antigen recognition and the immunological synapse[J].Nature Reviews Immunology,2003,3(12):973-983.
[4] TOOR SM, SALEH R, SASIDHARAN NAIR V, et al. T-cell responses and therapiesagainst SARS-CoV-2 infection[J]. Immunology,2021,162(1):30-43.
[5] MAZZONI A, SALVATI L, MAGGI L, et al. Impaired immune cell cytotoxicity insevere COVID-19 is IL-6 dependent[J]. The Journal of ClinicalInvestigation,2020,130(9):4694-4703.
[6] DE BIASI S, MESCHIARI M, GIBELLINI L, et al. Marked T cell activation,senescence, exhaustion and skewing towards TH17 in patients with COVID-19pneumonia[J]. Nature Communications,2020,11(1):3434.
[7] TAN M, LIU Y, ZHOU R, et al. Immunopathological characteristics of coronavirusdisease 2019 cases in Guangzhou, China[J]. Immunology,2020,160(3):261 -268.
[8] MATHEW D, GILES JR, BAXTER AE, et al. Deep immune profiling of COVID-19patients reveals distinct immunotypes with therapeutic implications[J].Science,2020,369(6508):eabc8511.
[9] LIAO M, LIU Y, YUAN J, et al. Single-cell landscape of bronchoalveolar immunecells in patients with COVID-19[J]. Nature Medicine,2020,26(6):842-844.
[10] WEN W, SU W, TANG H, et al. Immune cell profiling of COVID-19 patients in therecovery stage by single-cell sequencing[J]. Cell Discovery,2020,6:31.
[11] CHANNAPPANAVAR R, FETT C, ZHAO J, et al. Virus-specific memory CD8 T cellsprovide substantial protection from lethal severe acute respiratory syndromecoronavirus infection[J]. Journal of Virology,2014,88(19):11034-11044.
[12] PENALOZA-MACMASTER P, BARBER DL, WHERRY EJ, et al. Vaccine-elicitedCD4 T cells induce immunopathology after chronic LCMV infection[J].Science,2015,347(6219):278-282.
[13] SCHULIEN I, KEMMING J, OBERHARDT V, et al. Characterization of pre -existingand induced SARS-CoV-2-specific CD8+ T cells[J]. NatureMedicine,2020,27(1):78-85.参考文献62
[14] BRAUN J, LOYAL L, FRENTSCH M, et al. SARS-CoV-2-reactive T cells in healthydonors and patients with COVID-19[J]. Nature,2020,587(7833):270–274.
[15] WEISKOPF D, SCHMITZ KS, RAADSEN MP, et al. Phenotype and kinetics ofSARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distresssyndrome[J]. Science Immunology,2020,5(48):eabd2071.
[16] RYDYZNSKI MODERBACHER C, RAMIREZ SI, DAN JM, et al. Antigen-specificadaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age anddisease severity[J]. Cell,2020,183(4):996-1012.e19.
[17] GRIFONI A, WEISKOPF D, RAMIREZ SI, et al. Targets of T cell responses toSARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposedindividuals[J]. Cell,2020,181(7):1489-1501.e15.
[18] LE BERT N, TAN AT, KUNASEGARAN K, et al. SARS-CoV-2-specific T cellimmunity in cases of COVID-19 and SARS, and uninfected controls[J].Nature,2020,584(7821):457-462.
[19] PENG Y, MENTZER AJ, LIU G, et al. Broad and strong memory CD4+ and CD8+ Tcells induced by SARS-CoV-2 in UK convalescent individuals followingCOVID-19[J]. Nature Immunology,2020,21(11):1336-1345.
[20] GUTIERREZ L, BECKFORD J, ALACHKAR H. Deciphering the TCR repertoire tosolve the COVID-19 mystery[J]. Trends in PharmacologicalSciences,2020,41(8):518-530.
[21] BASSING CH, SWAT WS, ALT FW. The mechanism and regulation of chromosomalV(D)J recombination[J]. Cell,2002,109(Suppl):S45-55.
[22] CHEN G, YANG X, KO A, et al. Sequence and structural analyses reveal distinct andhighly diverse human CD8+ TCR repertoires to immunodominant viral antigens[J].Cell Reports,2017,19(3):569-583.
[23] SHARON E, SIBENER LV, BATTLE A, et al. Genetic variation in MHC proteins isassociated with T cell receptor expression biases[J ]. NatureGenetics,2016,48(9):995-1002.
[24] FALFAN-VALENCIA R, NARAYANANKUTTY A, RESENDIZ-HERNáNDEZ JM, etal. An increased frequency in HLA class I alleles and haplotypes suggests geneticsusceptibility to influenza A (H1N1) 2009 pandemic: a case-control study[J]. Journalof Immunology Research,2018,2018:3174868.
[25] NGUYEN A, DAVID JK, MADEN SK, et al. Human leukocyte antigen susceptibilitymap for severe acute respiratory syndrome coronavirus 2[J]. Journal ofVirology,2020,94(13):e00510-00520.
[26] LIN M, TSENG HK, TREJAUT JA, et al. Association of HLA class I with severeacute respiratory syndrome coronavirus infection[J]. BMC MedicalGenetics,2003,4(9):1471-2350.参考文献63
[27] GIL A, YASSAI MB, NAUMOV YN, et al. Narrowing of human influenza Avirus-specific T cell receptor α and β repertoires with increasing age[J]. Journal ofVirology,2015,89(8):4102-4016.
[28] RUAN Q, YANG K, WANG W, et al. Clinical predictors of mortality due toCOVID-19 based on an analysis of data of 150 patients from Wuhan, China[J].Intensive Care Medicine,2020,46(5):846-848.
[29] HU Z, ANANDAPPA AJ, SUN J, et al. A cloning and expression system to probeT-cell receptor specificity and assess functional avidity to neoantigens[J].Blood,2018,132(18):1911-1921.
[30] BRUNK F, MORITZ A, NELDE A, et al. SARS-CoV-2-reactive T-cell receptorsisolated from convalescent COVID-19 patients confer potent T-cell effectorfunction[J]. European Journal of Immunology,2021,51(11):2651 -2664.
[31] KIYOTANI K, TOYOSHIMA Y, NEMOTO K, et al. Bioinformatic prediction ofpotential T cell epitopes for SARS-Cov-2[J]. Journal of HumanGenetics,2020,65(7):569-575.
[32] RANGA V, NIEMELA E, TAMIRAT MZ, et al. Immunogenic SARS-CoV-2 epitopes:in silico study towards better understanding of COVID-19 disease-paving the way forvaccine development[J]. Vaccines,2020,8(3):408.
[33] ALTMAN JD, MOSS PAH, GOULDER PJR, et al. Phenotypic analysis ofantigen-specific T lymphocytes[J]. Science,1996,274(5284):94-96.
[34] SHOMURADOVA AS, VAGIDA MS, SHEETIKOV SA, et al. SARS-CoV-2 epitopesare recognized by a public and diverse repertoire of human T cell receptors[J].Immunity,2020,53(6):1245-1257.e5.
[35] FERRETTI AP, KULA T, WANG Y, et al. Unbiased screens show CD8+ T cells ofCOVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely resideoutside the spike protein[J]. Immunity, 2020,53(5):1095-1107.e3.
[36] BARUAH V, BOSE S. Immunoinformatics-aided identification of T cell and B cellepitopes in the surface glycoprotein of 2019-nCoV[J]. Journal of MedicalVirology,2020,92(5):495-500.
[37] ZHANG J, LIN H, YE B, et al. One-year sustained cellular and humoral immunitiesof COVID-19 convalescents[J]. Clinical infectious diseases,2021,in press.
[38] ZHAO J, WANG L, SCHANK M, et al. SARS-CoV-2 specific memory T cell epitopesidentified in COVID-19-recovered subjects[J]. Virus Research,2021,304:198508.
[39] SEKINE T, PEREZ-POTTI A, RIVERA-BALLESTEROS O, et al. Robust T cellimmunity in convalescent individuals with asymptomatic or mild COVID-19[J].Cell,2020,183(1):158-168.e14.
[40] KULA T, DEZFULIAN MH, WANG CI, et al. T-Scan: a genome-wide method for thesystematic discovery of T cell epitopes[J]. Cell,2019,178(4):1016-1028.e13.参考文献64
[41] ZHANG H, DENG S, REN L, et al. Profiling CD8+ T cell epitopes of COVID-19convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants[J].Cell Reports,2021,36(11):109708.
[42] J ALSAADI EA, JONES IM. Membrane binding proteins of coronaviruses[J]. FutureVirology,2019,14(4):275-286.
[43] SCHOEMAN D, FIELDING BC. Coronavirus envelope protein: current knowledge[J].Virology Journal,2019,16(1):69.
[44] HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entrydepends on ACE2 and TMPRSS2 and is blocked by a clinically proven proteaseinhibitor[J]. Cell,2020,181(2):271-280.e8.
[45] HUANG IC, BOSCH BJ, LI F, et al. SARS coronavirus, but not human coronavirusNL63, utilizes cathepsin L to infect ACE2-expressing cells[J]. The Journal ofBiological Chemistry,2006,281(6):3198-3203.
[46] JACKSON CB, FARZAN M, CHEN B, et al. Mechanisms of SARS-CoV-2 entry intocells[J]. Nature Reviews Molecular Cell Biology,2021,23(1):3 -20.
[47] CUI J, LI F, SHI ZL. Origin and evolution of pathogenic coronaviruses[J]. NatureReviews Microbiology,2019,17(3):181-192.
[48] LU R, ZHAO X, LI J, et al. Genomic characterisation and epidemiology of 2019novel coronavirus: implications for virus origins and receptor binding[J].Lancet,2020,395(10224):565-574.
[49] LIU Y, YAN LM, WAN L, et al. Viral dynamics in mild and severe cases ofCOVID-19[J]. The Lancet Infectious Diseases,2020,20(6):656-657.
[50] EDENFIELD RC, EASLEY CA. Implications of testicular ACE2 and therenin-angiotensin system for SARS-CoV-2 on testis function[J]. Nature ReviewsUrology,2021,19(2):116-127.
[51] TISONCIK JR, KORTH MJ, SIMMONS CP, et al. Into the eye of the cytokinestorm[J]. Microbiology and Molecular Biology Reviews,2012,76(1):16 -32.
[52] KARKI R, SHARMA BR, TULADHAR S, et al. Synergism of TNF-α and IFN-γtriggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2infection and cytokine shock syndromes[J]. Cell,2021,184(1):149-168.e17.
[53] MEHTA P, MCAULEY DF, BROWN M, et al. COVID-19: consider cytokine stormsyndromes and immunosuppression[J]. Lancet,2020,395(10229):1033-1034.
[54] GIAMARELLOS-BOURBOULIS EJ, NETEA MG, ROVINA N, et al. Compleximmune dysregulation in COVID-19 patients with severe respiratory failure[J]. CellHost & Microbe,2020,27(6):992-1000.e3.
[55] KURI-CERVANTES L, PAMPENA MB, MENG WZ, et al. Comprehensive mappingof immune perturbations associated with severe COVID-19[J]. ScienceImmunology,2020,5(49):eabd7114.参考文献65
[56] SCHAEFER IM, PADERA RF, SOLOMON IH, et al. In situ detection of SARS-CoV-2in lungs and airways of patients with COVID-19[J]. ModernPathology,2020,33(11):2104-2114.
[57] GARCIA LF. Immune response, inflammation, and the clinical spectrum ofCOVID-19[J]. Frontiers in Immunology,2020,11:1441.
[58] SAHIN U, MUIK A, VOGLER I, et al. BNT162b2 vaccine induces neutralizingantibodies and poly-specific T cells in humans[J]. Nature,2021,595(7868):572-577.
[59] OBERHARDT V, LUXENBURGER H, KEMMING J, et al. Rapid and stablemobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine[J].Nature,2021,597(7875):268-273.
[60] PLANTE JA, MITCHELL BM, PLANTE KS, et al. The variant gambit: COVID-19’snext move[J]. Cell Host & Microbe,2021,29(4):508-515.
[61] KARIM SSA, KARIM QA. Omicron SARS-CoV-2 variant: a new chapter in theCOVID-19 pandemic[J]. Lancet,2021,398(10317):2126-2128.
[62] THOMSON EC, ROSEN LE, SHEPHERD JG, et al. Circulating SARS-CoV-2 spikeN439K variants maintain fitness while evading antibody-mediated immunity[J].Cell,2021,184(5):1171-1187.e20.
[63] WANG P, NAIR MS, LIU L, et al. Antibody resistance of SARS-CoV-2 variantsB.1.351 and B.1.1.7[J]. Nature,2021,593(7857):130-135.
[64] RIOU C, KEETON R, MOYO-GWETE T, et al. Escape from recognition ofSARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity[J].Science Translational Medicine,2022,14(631):eabj6824.
[65] GRIFONI A, SIDNEY J, VITA R, et al. SARS-CoV-2 human T cell epitopes: adaptiveimmune response against COVID-19[J]. Cell Host & Microbe,2021,29(7):1076-1092.
[66] VIANA R, MOYO S, AMOAKO DG, et al. Rapid epidemic expansion of theSARS-CoV-2 Omicron variant in southern Africa[J]. Nature,2022,603(7902):679-686.
[67] GARCIA-BELTRAN WF, ST DENIS KJ, HOELZEMER A, et al. mRNA-basedCOVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2Omicron variant[J]. Cell,2022,185(3):457-466.e4.
[68] VANBLARGAN LA, ERRICO JM, HALFMANN PJ, et al. An infectiousSARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeuticmonoclonal antibodies[J]. Nature Medicine,2022,28(3):490-495.
[69] NARANBHAI V, NATHAN A, KASEKE C, et al. T cell reactivity to the SARS-CoV-2Omicron variant is preserved in most but not all individuals[J].Cell,2022,185(6):1041-1051.e6.参考文献66
[70] CLEMENT M, KNEZEVIC L, DOCKREE T, et al. CD8 coreceptor-mediated focusingcan reorder the agonist hierarchy of peptide ligands recognized vi a the T cellreceptor[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2021,118(29):e2019639118.
[71] PARK J, TAKEUCHI A, SHARMA S. Characterization of a new isoform of the NFAT(nuclear factor of activated T cells) gene family member NFATc[J]. Journal ofBiological Chemistry,1996,271(34):20914-20921.
[72] SHAH K, AL-HAIDARI A, SUN J, et al. T cell receptor (TCR) signaling in healthand disease[J]. Signal Transduction and Targeted Therapy,2021,6(1) :412.
[73] GLANVILLE J, HUANG H, NAU A, et al. Identifying specificity groups in the T cellreceptor repertoire[J]. Nature,2017,547(7661):94-98.
[74] HUANG H, WANG C, RUBELT F, et al. Analyzing the mycobacterium tuberculosisimmune response by T-cell receptor clustering with GLIPH2 and genome-wideantigen screening[J]. Nature Biotechnology,2020,38(10):1194 -1202.
[75] GREGERSEN JW, KRANC KR, KE X, et al. Functional epistasis on a common MHChaplotype associated with multiple sclerosis[J]. Nature,2006,443(7111):574 -577.
[76] WANG J, JELCIC I, MUHLENBRUCH L, et al. HLA-DR15 molecules jointly shapean autoreactive T cell repertoire in multiple sclerosis[J].Cell,2020,183(5):1264-1281.e20.
修改评论