[1] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036.
[2] LENH J–M. Spuramolecular chemistry–scope and perspectives molecules, supermolecules, and molecular devices[J]. Angewandte Chemie International Edition, 1988, 27(1): 89-112.
[3] ESCOBAR L, BALLESTER P. Molecular recognition in water using macrocyclic synthetic receptors[J]. Chemical Reviews, 2021, 121(4): 2445-2514.
[4] ARIGA K, ITO H, HILL J P, et al. Molecular recognition: from solution science to nano/materials technology[J]. Chemical Society Reviews, 2012, 41(17): 5800 -5835.
[5] SHETTY D, KHEDKAR J K, PARK K M, et al. Can we beat the biotin–avidin pair?: cucurbit
[7]uril-based ultrahigh affinity host–guest complexes and their applications[J]. Chemical Society Reviews, 2015, 44(23): 8747-8761.
[6] HARADA A, TAKASHIMA Y, NAKAHATA M. Supramolecular polymeric materials via cyclodextrin–guest interactions[J]. Accounts of Chemical Research, 2014, 47(7): 2128-2140.
[7] CRINI G. Review: a history of cyclodextrins[J]. Chemical Reviews, 2014, 114(21): 10940-10975.
[8] REKHARSKY M V, INOUE Y. Complexation thermodynamics of cyclodextrins[J]. Chemical Reviews, 1998, 98(5): 1875-1918.
[9] LAGONA J, MUKHOPADHYAY P, CHAKRABARTI S, et al. The Cucurbit[n]uril Family[J]. Angewandte Chemie International Edition, 2005, 44(31): 4844 -4870.
[10] BIEDERMANN F, UZUNOVA V D, SCHERMAN O A, et al. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils[J]. Journal of the American Chemical Society, 2012, 134(37): 15318-15323.
[11] ASSAF K I, FLOREA M, ANTONY J, et al. Hydrophobe challenge: a joint experimental and computational study on the host-guest binding of hydrocarbons to cucurbiturils, allowing explicit evaluation of guest hydration free-energy contributions[J]. The Journal of Physical Chemistry B, 2017, 121(49): 11144-11162.
[12] LIU S, RUSPIC C, MUKHOPADHYAY P, et al. The cucurbit[n]uril family: prime components for self-sorting systems[J]. Journal of the American Chemical Society, 2005, 127(45): 15959-15967.
[13] CAO L, SEKUTOR M, ZAVALIJ P Y, et al. Cucurbit
[7]urilguest pair with an attomolar dissociation constant[J]. Angewandte Chemie International Edition, 2014, 53(4): 988 993.
[14] KIM H-J, HEO J, JEON W S, et al. Selective inclusion of a hetero-guest pair in a molecular host: formation of stable charge-transfer complexes in cucurbit
[8]uril[J]. Angewandte Chemie International Edition, 2001, 40(8): 1526-1529.
[15] BUSH M E, BOULEY N D, URBACH A R. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host[J]. Journal of the American Chemical Society, 2005, 127(41): 14511-14517.
[16] SMITH L C, LEACH D G, BLAYLOCK B E, et al. Sequence-specific, nanomolar peptide binding via cucurbit
[8]uril-induced folding and inclusion of neighboring side chains[J]. Journal of the American Chemical Society, 2015, 137(10): 3663 -3669.
[17] OSHOVSKY G V, REINHOUDT D N, VERBOOM W. Supramolecular chemistry in water[J]. Angewandte Chemie International Edition, 2007, 46(14): 2366-2393.
[18] IZATT R M, PAWLAK K, BRADSHAW J S, et al. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules[J]. Chemical Reviews, 1995, 95(7): 2529-2586.
[19] SHINKAI S, ARAKI K, KUBOTA M, et al. Ion template effects on the conformation of water-soluble calixarenes[J]. The Journal of Organic Chemistry, 1991, 56(1): 295 300.
[20] ZHAO HX, GUO DS, LIU Y. Binding behaviors of p-sulfonatocalix
[4]arene with gemini guests[J]. The Journal of Physical Chemistry B, 2013, 117(6): 1978-1987.
[21] GUO DS, ZHANG HQ, DING F, et al. Thermodynamic origins of selective binding affinity between p-sulfonatocalix
[4,5]arenes with biguanidiniums[J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1527-1536.
[22] WANG YX, ZHANG YM, WANG YL, et al. Multifunctional vehicle of amphiphilic calix
[4]arene mediated by liposome[J]. Chemistry of Materials, 2015, 27(8): 28482854.
[23] OGOSHI T, KANAI S, FUJINAMI S, et al. Para-bridged symmetrical pillar
[5]arenes: their lewis acid catalyzed synthesis and host–guest property[J]. Journal of the American Chemical Society, 2008, 130(15): 5022-5023.
[24] BIEDERMANN F, SCHNEIDER H-J. Experimental binding energies in supramolecular complexes[J]. Chemical Reviews, 2016, 116(9): 5216-5300.
[25] JIE K, ZHOU Y, LI E, et al. Nonporous adaptive crystals of pillararenes[J]. Accounts of Chemical Research, 2018, 51(9): 2064-2072.
[26] ZHOU Y, JIE K, ZHAO R, et al. Highly selective removal of trace isomers by nonporous adaptive pillararene crystals for chlorobutane purification[J]. Journal of the American Chemical Society, 2020, 142(15): 6957-6961.
[27] KATO K, OHTANI S, FA S, et al. Discrete and continuous one-dimensional channels based on pillar[n]arenes[J]. Bulletin of the Chemical Society of Japan, 2021, 94(10): 2319-2328.
[28] ZHOU J, RAO L, YU G, et al. Supramolecular cancer nanotheranostics[J]. Chemical Society Reviews, 2021, 50(4): 2839-2891.
[29] GREEN N M. Avidin. 3. the nature of the biotin-binding site[J]. Biochemical Journal, 1963, 89(3): 599-609.
[30] YANG J-M, CHEN Y-Q, YU Y, et al. Rigidified cavitand hosts in water: bent guests, shape selectivity, and encapsulation[J]. Journal of the American Chemical Society, 2021, 143(46): 19517-19524.
[31] BUTTERFIELD S M, REBEK J. A synthetic mimic of protein inner space: buried polar interactions in a deep water-soluble host[J]. Journal of the American Chemical Society, 2006, 128(48): 15366-15367.
[32] VERDEJO B, GIL-RAMíREZ G, BALLESTER P. Molecular recognition of pyridine N-oxides in water using calix
[4]pyrrole receptors[J]. Journal of the American Chemical Society, 2009, 131(9): 3178-3179.
[33] HERNANDEZ-ALONSO D, ZANKOWSKI S, ADRIAENSSENS L, et al. Watersoluble aryl-extended calix
[4]pyrroles with unperturbed aromatic cavities: synthesis and binding studies[J]. Organic & Biomolecular Chemistry, 2015, 13(4): 1022-1029.
[34] PENUELAS-HARO G, BALLESTER P. Efficient hydrogen bonding recognition in water using aryl-extended calix
[4]pyrrole receptors[J]. Chemical Science, 2019, 10(8): 2413-2423.
[35] ESCOBAR L, BALLESTER P. Quantification of the hydrophobic effect using watersoluble super aryl-extended calix
[4]pyrroles[J]. Organic Chemistry Frontiers, 2019, 6(11): 1738-1748.
[36] LASCAUX A, LEENER G D, FUSARO L, et al. Selective recognition of neutral guests in an aqueous medium by a biomimetic calix
[6]cryptamide receptor[J]. Organic & Biomolecular Chemistry, 2016, 14(2): 738-746.
[37] SHORTHILL B J, AVETTA C T, GLASS T E. Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube[J]. Journal of the American Chemical Society, 2004, 126(40): 12732-12733.
[38] YANG LP, WANG X, YAO H, et al. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature[J]. Accounts of Chemical Research, 2020, 53(1): 198-208.
[39] HUANG G, HE Z, CAI CX, et al. Bis-urea macrocycles with a deep cavity[J]. Chemical Communications, 2015, 51(85): 15490-15493.
[40] HUANG G, VALKONEN A, RISSANEN K, et al. Endo-functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media[J]. Chemical Communications, 2016, 52(58): 9078-9081.
[41] HUANG GB, WANG SH, KE H, et al. Selective recognition of highly hydrophilic molecules in water by endo-functionalized molecular tubes[J]. Journal of the American Chemical Society, 2016, 138(44): 14550-14553.
[42] YAO H, KE H, ZHANG X, et al. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding[J]. Journal of the American Chemical Society, 2018, 140(41): 13466-13477.
[43] YANG LP, KE H, YAO H, et al. Effective and rapid removal of polar organic micropollutants from water by amide naphthotube-crosslinked polymers[J]. Angewandte Chemie International Edition, 2021, 60(39): 21404-21411.
[44] LIU WE, CHEN Z, YANG LP, et al. Molecular recognition of organophosphorus compounds in water and inhibition of their toxicity to acetylcholinesterase[J]. Chemical Communications, 2019, 55(66): 9797-9800.
[45] LIU WE, QUAN M, ZHOU H, et al. Stabilization of the closed-ring isomer of spiropyran by amide naphthotube in water and its application in naked-eye detection of toxic paraoxon[J]. Chemphyschem, 2020, 21(20): 2249-2253.
[46] WANG LL, CHEN Z, LIU WE, et al. Molecular recognition and chirality sensing of epoxides in water using endo-functionalized molecular tubes[J]. Journal of the American Chemical Society, 2017, 139(25): 8436-8439.
[47] WANG LL, QUAN M, YANG TL, et al. A green and wide-scope approach for chiroptical sensing of organic molecules through biomimetic recognition in water[J]. Angewandte Chemie International Edition, 2020, 59(52): 23817-23824.
[48] CHAI H, CHEN Z, WANG SH, et al. Enantioselective recognition of neutral molecules in water by a pair of chiral biomimetic macrocyclic receptors[J]. CCS Chemistry, 2020, 2(6): 440-452.
[49] ZHOU H, PANG XY, WANG X, et al. Biomimetic recognition of quinones in water by an endo-functionalized cavity with anthracene sidewalls[J]. Angewandte Chemie International Edition in English, 2021, 60(49): 25981-25987.
[50] LI DH, SMITH B D. Molecular recognition using tetralactam macrocycles with parallel aromatic sidewalls[J]. Beilstein Journal of Organic Chemistry, 2019, 15: 10861095.
[51] DONG J, DAVIS A P. Molecular recognition mediated by hydrogen bonding in aqueous media[J]. Angewandte Chemie International Edi tion in English, 2021, 60(15): 80358048.
[52] RIOS P, CARTER T S, MOOIBROEK T J, et al. Synthetic receptors for the highaffinity recognition of O-GlcNAc derivatives[J]. Angewandte Chemie International Edition, 2016, 55(10): 3387-3392.
[53] DAVIS A P. Synthetic lectins[J]. Organic & Biomolecular Chemistry, 2009, 7(18): 3629-3638.
[54] BARWELL N P, CRUMP M P, DAVIS A P. A synthetic lectin for beta-glucosyl[J]. Angewandte Chemie International Edition, 2009, 48(41): 7673-7676.
[55] GASSENSMITH J J, ARUNKUMAR E, BARR L, et al. Self-assembly of fluorescent inclusion complexes in competitive media including the interior of living cells[J]. Journal of the American Chemical Society, 2007, 129(48): 15054-15059.
[56] KE C, DESTECROIX H, CRUMP M P, et al. A simple and accessible synthetic lectin for glucose recognition and sensing[J]. Nature Chemistry, 2012, 4(9): 718-723.
[57] VAN EKER D, SAMANTA S K, DAVIS A P. Aqueous recognition of purine and pyrimidine bases by an anthracene-based macrocyclic receptor[J]. Chemical Communication, 2020, 56(65): 9268-9271.
[58] TROMANS R A, CARTER T S, CHABANNE L, et al. A biomimetic receptor for glucose[J]. Nature Chemistry, 2019, 11(1): 52-56.
[59] PECK E M, LIU W, SPENCE G T, et al. Rapid macrocycle threading by a fluorescent dye-polymer conjugate in water with nanomolar affinity[J]. Journal of the American Chemical Society, 2015, 137(27): 8668-8671.
[60] LIU W, JOHNSON A, SMITH B D. Guest back-folding: a molecular design strategy that produces a deep-red fluorescent host/guest pair with picomolar affinity in water[J]. Journal of the American Chemical Society, 2018, 140(9): 3361-3370.
[61] DEMPSEY J M, ZHAI C, MCGARRAUGH H H, et al. High affinity threading of a new tetralactam macrocycle in water by fluorescent deep-red and near-infrared squaraine dyes[J]. Chemical Communications, 2019, 55(85): 12793-12796.
[62] ROLAND F M, PECK E M, RICE D R, et al. Preassembled fluorescent multivalent probes for the imaging of anionic membranes[J]. Bioconjugate Chemistry, 2017, 28(4): 1093-1101.
[63] ZHAI C, SCHREIBER C L, PADILLA-COLEY S, et al. Fluorescent self-threaded peptide probes for biological imaging[J]. Angewandte Chemie International Edition, 2020, 59(52): 23740-23747.
[64] DHARMARWARDANA M, DEMPSEY J M, PADILLA-COLEY S, et al. Supramolecular capture of highly polar amidosquaraine dye in water with nanomolar affinity and large turn-on fluorescence[J]. Journal of the American Chemical Society, 2021, 57(99): 13518-13521.
[65] YANG LP, ZHANG L, QUAN M, et al. A supramolecular system that strictly follows the binding mechanism of conformational selection[J]. Nature Communications, 2020, 11(1): 2740.
[66] WANG LL, TU YK, YAO H, et al. 2,3-Dibutoxynaphthalene-based tetralactam macrocycles for recognizing precious metal chloride complexes[J]. Beilstein Journal of Organic Chemistry, 2019, 15: 1460-1467.
[67] WANG LL, TU YK, VALKONEN A, et al. Selective recognition of phenazine by 2,6dibutoxylnaphthalene-Based tetralactam macrocycle[J]. Chinese Journal of Chemistry, 2019, 37(9): 892-896.
[68] THAKUR K, TOMAR S K, SINGH A K, et al. Riboflavin and health: a review of recent human research[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(17): 3650-3660.
[69] SHERAZ M A, KAZI S H, AHMED S, et al. Photo, thermal and chemical degradation of riboflavin[J]. Beilstein Journal of Organic Chemistry, 2014, 10: 1999-2012.
[70] LOUKAS Y L. A Plackett–Burnam screening design directs the efficient formulation of multicomponent DRV liposomes[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 26(2): 255-263.
[71] ASKER A, HABIB M. Effect of certain stabilizers on photobleacing of riboflavin solutions[J]. Drug Development and Industrial Pharmacy, 2008, 16: 149 -156.
[72] AHMAD I, ARSALAN A, ALI S A, et al. Formulation and stabilization of norfloxacin in liposomal preparations[J]. European Journal of Pharmaceutical Science s, 2016, 91: 208-215.
[73] LOUKAS Y L, JAYASEKERA P, GREGORIADIS G. Characterization and photoprotection studies of a model γ-cyclodextrin-included photolabile drug entrapped in liposomes incorporating light absorbers[J]. The Journal of Physical Chemistry, 1995, 99(27): 11035-11040.
[74] TEREKHOVA I V, TIKHOVA M N, VOLKOVA T V, et al. Inclusion complex formation of α- and β-cyclodextrins with riboflavin and alloxazine in aqueous solution: thermodynamic study[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistr y, 2011, 69(1): 167-172.
[75] TEREKHOVA I, KOŹBIAŁ M, KUMEEV R, et al. Inclusion complex formation between modified cyclodextrins and riboflvin and alloxazine in aqueous solution[J]. Journal of Solution Chemistry, 2011, 40: 1435-1446.
[76] KARPOWICH N K, SONG J, WANG DN. An aromatic cap seals the substrate binding site in an ECF-type S subunit for riboflavin[J]. Journal of Molecular Biology, 2016, 428(15): 3118-3130.
[77] DUURKENS R H, TOL M B, GEERTSMA E R, et al. Flavin binding to the high affinity riboflavin transporter RibU[J]. Journal of Biological Chemistry, 2007, 282(14): 1038010386.
[78] KLEIN E, CRUMP M P, DAVIS A P. Carbohydrate recognition in water by a tricyclic polyamide receptor[J]. Angewandte Chemie International Edition, 2005, 44(2): 298302.
[79] BIEDERMANN F, NAU W M, SCHNEIDER H-J. The Hydrophobic effect revisitedstudies with supramolecular complexes imply high-energy water as a noncovalent driving force[J]. Angewandte Chemie International Edition, 2014, 53(42): 11158 11171.
[80] ZHOU Y, JUNYONG S, YU H, et al. Inclusion complex of riboflavin with cucurbit
[7]uril: Study in solution and solid state[J]. Supramolecular Chemistry, 2009, 21: 495-501.
[81] CHAI J-D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10(44): 6615-6620.
[82] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[83] KROMANN J C, STEINMANN C, JENSEN J H. Improving solvation energy predictions using the SMD solvation method and semiempirical electronic structure methods[J]. The Journal of Chemical Physics, 2018, 149(10): 104102.
[84] AHMAD I, AHMED S, ANWAR Z, et al. Photostability and photostabilization of drugs and drug products[J]. International Journal of Photoenergy, 2016, 2016: 8135608.
[85] KRAMER J, KANG R, GRIMM L M, et al. Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids[J]. Chemical Reviews, 2022, 122(3): 3459-3636.
[86] SINDELAR V, CEJAS M A, RAYMO F M, et al. Supramolecular assembly of 2,7dimethyldiazapyrenium and cucurbit
[8]uril: a new fluorescent host for detection of catechol and dopamine[J]. Chemistry–A European Journal, 2005, 11(23): 7054-7059.
[87] LING Y, WANG W, KAIFER A E. A new cucurbit
[8]uril-based fluorescent receptor for indole derivatives[J]. Chemical Communications, 2007(6): 610-612.
[88] BARBA-BON A, PAN Y-C, BIEDERMANN F, et al. Fluorescence monitoring of peptide transport pathways into large and giant vesicles by supramolecular host–dye reporter pairs[J]. Journal of the American Chemical Society, 2019, 141(51): 20137 20145.
[89] BIEDERMANN F, GHALE G, HENNIG A, et al. Fluorescent artificial receptor -based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability[J]. Communications Biology, 2020, 3(1): 383.
[90] ZHANG S, ASSAF K I, HUANG C, et al. Ratiometric DNA sensing with a host–guest FRET pair[J]. Chemical Communications, 2019, 55(5): 671-674.
[91] SINGH V R, SINGH P K. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution[J]. Journal of Materials Chemistry B, 2020, 8(6): 1182-1190.
[92] ZHENG Z, GENG WC, GAO J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene[J]. Chemical Science, 2018, 9(8): 2087-2091.
[93] CHEN J, HICKEY B L, WANG L, et al. Selective discrimination and classification of G-quadruplex structures with a host-guest sensing array[J]. Nature Chemistry, 2021, 13(5): 488-495.
[94] CHEN J, GILL A D, HICKEY B L, et al. Machine learning aids classification and discrimination of noncanonical DNA folding motifs by an arrayed host/guest sensing system[J]. Journal of the American Chemical Society, 2021, 143(32): 12791-12799.
[95] KUMAR C V, TURNER R S, ASUNCION E H. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 74(2): 231-238.
[96] WAINWRIGHT M. Photoinactivation of viruses[J]. Photochemical & Photobiological Sciences, 2004, 3(5): 406-411.
[97] FUJIMOTO B S, CLENDENNING J B, DELROW J J, et al. Fluorescence and photobleaching studies of methylene blue binding to DNA[J]. The Journal of Physical Chemistry, 1994, 98(26): 6633-6643.
[98] CAO X, TOLBERT R W, MCHALE J L, et al. Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye[J]. The Journal of Physical Chemistry A, 1998, 102(17): 2739-2748.
修改评论