中文版 | English
题名

水溶性萘基四内酰胺大环的合成及其分子识别研究

其他题名
WATER-SOLUBLE NAPHTHOTETRALACTAM MACROCYCLES: SYNTHESIS AND MOLECULAR RECOGNITION STUDIES
姓名
姓名拼音
ZHANG Hong
学号
11930077
学位类型
硕士
学位专业
0703 化学
学科门类/专业学位类别
07 理学
导师
蒋伟
导师单位
化学系
论文答辩日期
2022-05-13
论文提交日期
2022-06-27
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

分子识别在自然界中普遍存在,是许多生命现象与生物功能的基础。如何在水相中选择性识别极性分子或极性基团是超分子化学发展亟待解决的难题之一。设计并合成能够特异性高效识别客体分子的主体体系是超分子化学的研究热点。其中,四内酰胺大环具有较大的非极性疏水表面和包含极性官能团的内部空腔,类似于自然界中许多蛋白质的两亲性结合口袋。这类大环在水相或者有机溶剂中能选择性地识别大量不同结构的客体分子,在超分子方面具有非常广阔的应用前景。但是,目前文献报道的四内酰胺大环通常以苯基或者蒽基作为芳香侧壁,但其构象单一且空腔较为狭窄,可识别的客体分子受限。

为解决这一问题,本文引入2,6位桥接的萘基作为芳香侧壁,构筑新型萘基四内酰胺大环。所合成大环将具有比苯基或蒽基大环更大的空腔;且萘环通过翻转可以产生两种较为稳定的构象,在键合客体时可以选择优势构象以达到最大强度键合。本论文首先合成了新型水溶性萘基四内酰胺大环WNT,并研究了其对核黄素的光保护性能;随后考察了大环WNT在水溶液中对各类染料的主客体化学。具体分为以下两个部分:

(一)通过引入2,6-位桥接的萘作为芳香侧壁,构筑了新型水溶性萘基四内酰胺大环WNT。核磁、紫外、荧光和等温滴定量热等实验研究发现:WNT利用氢键和疏水效应协同作用,实现了对核黄素的选择性键合,键合常数高达1.2 × 107 M-1,远高于环糊精和葫芦脲等经典大环。此外,与游离的核黄素相比,主客体复合物中核黄素的光稳定性得到了显著增强。这一特性使得大环主体WNT可作为核黄素类化合物的光稳定剂,并进一步用于药物或添加剂中。

(二)本论文还考察了大环WNT和水溶性有机染料分子的主客体化学。实验结果表明,大环WNT对常见的芳香染料具有较强的键合能力,键合常数在104 ~ 106 M-1之间。此外,染料与大环WNT的键合伴随明显的荧光增强或猝灭,这一特性为超分子染料体系在生物成像等方面提供了参考。

 

 

其他摘要

Molecular recognition is ubiquitous in nature and it is the basis of many life phenomena. How to selectively recognize polar molecules or polar groups in water is one of the urgent problems for the development of supramolecular chemistry. Therefore to design and synthesize of new host systems that can recognize guests with specificity and high efficiency is a research hotspot at the moment. Tetralactam macrocycles have large nonpolar hydrophobic surface and a cavity containing many polar functional groups, similar to the amphiphilic binding pocket of many proteins in nature. These macrocycles can selectively recognize a large number of guests with different structures in aqueous phase or organic solvent and have a very broad prospect in supramolecular applications. However, tetralactam macrocycles reported in literature usually have phenyl or anthracene group as the side wall which has only one conformation. And their cavity is relatively narrow, so the guests that can be recognized are limited.

By introducing the 2,6-position bridged naphthalene group as the construction unit, the macrocycle will have a larger cavity than the phenyl- or anthracene-based macrocycles. Furthermore, the naphthalene can produce two mainly conformations by flipping, so the preferred conformation may be selected to achieve the maximum binding strength. In this paper, a novel water-soluble naphthotetralactam macrocycle WNT was synthesized and its photoprotection ability for riboflavin was studied. Subsequently, the host-guest chemistry of WNT for various dyes in aqueous solution was investigated. Specifically divided into the following two parts:

First, a a novel water-soluble naphthotetralactam macrocycle WNT was constructed by introducing 2,6-bridged naphthalene as aromatic side wall. Experimental studies on NMR, UV, fluorescence and isothermal titration have found that host WNT achieves selective binding with riboflavin in water mainly through hydrophobic effect and hydrogen bonding. The binding constant is up to 1.2 × 107 M-1, which is much higher than that with cyclodextrin and cucurbituril. Meanwhile, the photostability of riboflavin in host-guest complex is enhanced compared with that of free riboflavin. This property allows the host WNT to be used as a light stabilizer for riboflavin compounds and further used in drugs or additives.

Second, the host-guest chemistry between host WNT and water-soluble organic dyes were also investigated. The experimental results showed that host WNT has strong binding ability to a series of common aromatic dyes, and the binding constants range from 104 to 106 M-1. In addition, the binding of dye to host WNT was accompanied by significant fluorescence enhancement or quenching. This property provides a reference for supramolecular dyes in biological imaging.

 

 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] PEDERSEN C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036.
[2] LENH J–M. Spuramolecular chemistry–scope and perspectives molecules, supermolecules, and molecular devices[J]. Angewandte Chemie International Edition, 1988, 27(1): 89-112.
[3] ESCOBAR L, BALLESTER P. Molecular recognition in water using macrocyclic synthetic receptors[J]. Chemical Reviews, 2021, 121(4): 2445-2514.
[4] ARIGA K, ITO H, HILL J P, et al. Molecular recognition: from solution science to nano/materials technology[J]. Chemical Society Reviews, 2012, 41(17): 5800 -5835.
[5] SHETTY D, KHEDKAR J K, PARK K M, et al. Can we beat the biotin–avidin pair?: cucurbit
[7]uril-based ultrahigh affinity host–guest complexes and their applications[J]. Chemical Society Reviews, 2015, 44(23): 8747-8761.
[6] HARADA A, TAKASHIMA Y, NAKAHATA M. Supramolecular polymeric materials via cyclodextrin–guest interactions[J]. Accounts of Chemical Research, 2014, 47(7): 2128-2140.
[7] CRINI G. Review: a history of cyclodextrins[J]. Chemical Reviews, 2014, 114(21): 10940-10975.
[8] REKHARSKY M V, INOUE Y. Complexation thermodynamics of cyclodextrins[J]. Chemical Reviews, 1998, 98(5): 1875-1918.
[9] LAGONA J, MUKHOPADHYAY P, CHAKRABARTI S, et al. The Cucurbit[n]uril Family[J]. Angewandte Chemie International Edition, 2005, 44(31): 4844 -4870.
[10] BIEDERMANN F, UZUNOVA V D, SCHERMAN O A, et al. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils[J]. Journal of the American Chemical Society, 2012, 134(37): 15318-15323.
[11] ASSAF K I, FLOREA M, ANTONY J, et al. Hydrophobe challenge: a joint experimental and computational study on the host-guest binding of hydrocarbons to cucurbiturils, allowing explicit evaluation of guest hydration free-energy contributions[J]. The Journal of Physical Chemistry B, 2017, 121(49): 11144-11162.
[12] LIU S, RUSPIC C, MUKHOPADHYAY P, et al. The cucurbit[n]uril family: prime components for self-sorting systems[J]. Journal of the American Chemical Society, 2005, 127(45): 15959-15967.
[13] CAO L, SEKUTOR M, ZAVALIJ P Y, et al. Cucurbit
[7]urilguest pair with an attomolar dissociation constant[J]. Angewandte Chemie International Edition, 2014, 53(4): 988 993.
[14] KIM H-J, HEO J, JEON W S, et al. Selective inclusion of a hetero-guest pair in a molecular host: formation of stable charge-transfer complexes in cucurbit
[8]uril[J]. Angewandte Chemie International Edition, 2001, 40(8): 1526-1529.
[15] BUSH M E, BOULEY N D, URBACH A R. Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host[J]. Journal of the American Chemical Society, 2005, 127(41): 14511-14517.
[16] SMITH L C, LEACH D G, BLAYLOCK B E, et al. Sequence-specific, nanomolar peptide binding via cucurbit
[8]uril-induced folding and inclusion of neighboring side chains[J]. Journal of the American Chemical Society, 2015, 137(10): 3663 -3669.
[17] OSHOVSKY G V, REINHOUDT D N, VERBOOM W. Supramolecular chemistry in water[J]. Angewandte Chemie International Edition, 2007, 46(14): 2366-2393.
[18] IZATT R M, PAWLAK K, BRADSHAW J S, et al. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules[J]. Chemical Reviews, 1995, 95(7): 2529-2586.
[19] SHINKAI S, ARAKI K, KUBOTA M, et al. Ion template effects on the conformation of water-soluble calixarenes[J]. The Journal of Organic Chemistry, 1991, 56(1): 295 300.
[20] ZHAO HX, GUO DS, LIU Y. Binding behaviors of p-sulfonatocalix
[4]arene with gemini guests[J]. The Journal of Physical Chemistry B, 2013, 117(6): 1978-1987.
[21] GUO DS, ZHANG HQ, DING F, et al. Thermodynamic origins of selective binding affinity between p-sulfonatocalix
[4,5]arenes with biguanidiniums[J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1527-1536.
[22] WANG YX, ZHANG YM, WANG YL, et al. Multifunctional vehicle of amphiphilic calix
[4]arene mediated by liposome[J]. Chemistry of Materials, 2015, 27(8): 28482854.
[23] OGOSHI T, KANAI S, FUJINAMI S, et al. Para-bridged symmetrical pillar
[5]arenes: their lewis acid catalyzed synthesis and host–guest property[J]. Journal of the American Chemical Society, 2008, 130(15): 5022-5023.
[24] BIEDERMANN F, SCHNEIDER H-J. Experimental binding energies in supramolecular complexes[J]. Chemical Reviews, 2016, 116(9): 5216-5300.
[25] JIE K, ZHOU Y, LI E, et al. Nonporous adaptive crystals of pillararenes[J]. Accounts of Chemical Research, 2018, 51(9): 2064-2072.
[26] ZHOU Y, JIE K, ZHAO R, et al. Highly selective removal of trace isomers by nonporous adaptive pillararene crystals for chlorobutane purification[J]. Journal of the American Chemical Society, 2020, 142(15): 6957-6961.
[27] KATO K, OHTANI S, FA S, et al. Discrete and continuous one-dimensional channels based on pillar[n]arenes[J]. Bulletin of the Chemical Society of Japan, 2021, 94(10): 2319-2328.
[28] ZHOU J, RAO L, YU G, et al. Supramolecular cancer nanotheranostics[J]. Chemical Society Reviews, 2021, 50(4): 2839-2891.
[29] GREEN N M. Avidin. 3. the nature of the biotin-binding site[J]. Biochemical Journal, 1963, 89(3): 599-609.
[30] YANG J-M, CHEN Y-Q, YU Y, et al. Rigidified cavitand hosts in water: bent guests, shape selectivity, and encapsulation[J]. Journal of the American Chemical Society, 2021, 143(46): 19517-19524.
[31] BUTTERFIELD S M, REBEK J. A synthetic mimic of protein inner space: buried polar interactions in a deep water-soluble host[J]. Journal of the American Chemical Society, 2006, 128(48): 15366-15367.
[32] VERDEJO B, GIL-RAMíREZ G, BALLESTER P. Molecular recognition of pyridine N-oxides in water using calix
[4]pyrrole receptors[J]. Journal of the American Chemical Society, 2009, 131(9): 3178-3179.
[33] HERNANDEZ-ALONSO D, ZANKOWSKI S, ADRIAENSSENS L, et al. Watersoluble aryl-extended calix
[4]pyrroles with unperturbed aromatic cavities: synthesis and binding studies[J]. Organic & Biomolecular Chemistry, 2015, 13(4): 1022-1029.
[34] PENUELAS-HARO G, BALLESTER P. Efficient hydrogen bonding recognition in water using aryl-extended calix
[4]pyrrole receptors[J]. Chemical Science, 2019, 10(8): 2413-2423.
[35] ESCOBAR L, BALLESTER P. Quantification of the hydrophobic effect using watersoluble super aryl-extended calix
[4]pyrroles[J]. Organic Chemistry Frontiers, 2019, 6(11): 1738-1748.
[36] LASCAUX A, LEENER G D, FUSARO L, et al. Selective recognition of neutral guests in an aqueous medium by a biomimetic calix
[6]cryptamide receptor[J]. Organic & Biomolecular Chemistry, 2016, 14(2): 738-746.
[37] SHORTHILL B J, AVETTA C T, GLASS T E. Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube[J]. Journal of the American Chemical Society, 2004, 126(40): 12732-12733.
[38] YANG LP, WANG X, YAO H, et al. Naphthotubes: macrocyclic hosts with a biomimetic cavity feature[J]. Accounts of Chemical Research, 2020, 53(1): 198-208.
[39] HUANG G, HE Z, CAI CX, et al. Bis-urea macrocycles with a deep cavity[J]. Chemical Communications, 2015, 51(85): 15490-15493.
[40] HUANG G, VALKONEN A, RISSANEN K, et al. Endo-functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media[J]. Chemical Communications, 2016, 52(58): 9078-9081.
[41] HUANG GB, WANG SH, KE H, et al. Selective recognition of highly hydrophilic molecules in water by endo-functionalized molecular tubes[J]. Journal of the American Chemical Society, 2016, 138(44): 14550-14553.
[42] YAO H, KE H, ZHANG X, et al. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding[J]. Journal of the American Chemical Society, 2018, 140(41): 13466-13477.
[43] YANG LP, KE H, YAO H, et al. Effective and rapid removal of polar organic micropollutants from water by amide naphthotube-crosslinked polymers[J]. Angewandte Chemie International Edition, 2021, 60(39): 21404-21411.
[44] LIU WE, CHEN Z, YANG LP, et al. Molecular recognition of organophosphorus compounds in water and inhibition of their toxicity to acetylcholinesterase[J]. Chemical Communications, 2019, 55(66): 9797-9800.
[45] LIU WE, QUAN M, ZHOU H, et al. Stabilization of the closed-ring isomer of spiropyran by amide naphthotube in water and its application in naked-eye detection of toxic paraoxon[J]. Chemphyschem, 2020, 21(20): 2249-2253.
[46] WANG LL, CHEN Z, LIU WE, et al. Molecular recognition and chirality sensing of epoxides in water using endo-functionalized molecular tubes[J]. Journal of the American Chemical Society, 2017, 139(25): 8436-8439.
[47] WANG LL, QUAN M, YANG TL, et al. A green and wide-scope approach for chiroptical sensing of organic molecules through biomimetic recognition in water[J]. Angewandte Chemie International Edition, 2020, 59(52): 23817-23824.
[48] CHAI H, CHEN Z, WANG SH, et al. Enantioselective recognition of neutral molecules in water by a pair of chiral biomimetic macrocyclic receptors[J]. CCS Chemistry, 2020, 2(6): 440-452.
[49] ZHOU H, PANG XY, WANG X, et al. Biomimetic recognition of quinones in water by an endo-functionalized cavity with anthracene sidewalls[J]. Angewandte Chemie International Edition in English, 2021, 60(49): 25981-25987.
[50] LI DH, SMITH B D. Molecular recognition using tetralactam macrocycles with parallel aromatic sidewalls[J]. Beilstein Journal of Organic Chemistry, 2019, 15: 10861095.
[51] DONG J, DAVIS A P. Molecular recognition mediated by hydrogen bonding in aqueous media[J]. Angewandte Chemie International Edi tion in English, 2021, 60(15): 80358048.
[52] RIOS P, CARTER T S, MOOIBROEK T J, et al. Synthetic receptors for the highaffinity recognition of O-GlcNAc derivatives[J]. Angewandte Chemie International Edition, 2016, 55(10): 3387-3392.
[53] DAVIS A P. Synthetic lectins[J]. Organic & Biomolecular Chemistry, 2009, 7(18): 3629-3638.
[54] BARWELL N P, CRUMP M P, DAVIS A P. A synthetic lectin for beta-glucosyl[J]. Angewandte Chemie International Edition, 2009, 48(41): 7673-7676.
[55] GASSENSMITH J J, ARUNKUMAR E, BARR L, et al. Self-assembly of fluorescent inclusion complexes in competitive media including the interior of living cells[J]. Journal of the American Chemical Society, 2007, 129(48): 15054-15059.
[56] KE C, DESTECROIX H, CRUMP M P, et al. A simple and accessible synthetic lectin for glucose recognition and sensing[J]. Nature Chemistry, 2012, 4(9): 718-723.
[57] VAN EKER D, SAMANTA S K, DAVIS A P. Aqueous recognition of purine and pyrimidine bases by an anthracene-based macrocyclic receptor[J]. Chemical Communication, 2020, 56(65): 9268-9271.
[58] TROMANS R A, CARTER T S, CHABANNE L, et al. A biomimetic receptor for glucose[J]. Nature Chemistry, 2019, 11(1): 52-56.
[59] PECK E M, LIU W, SPENCE G T, et al. Rapid macrocycle threading by a fluorescent dye-polymer conjugate in water with nanomolar affinity[J]. Journal of the American Chemical Society, 2015, 137(27): 8668-8671.
[60] LIU W, JOHNSON A, SMITH B D. Guest back-folding: a molecular design strategy that produces a deep-red fluorescent host/guest pair with picomolar affinity in water[J]. Journal of the American Chemical Society, 2018, 140(9): 3361-3370.
[61] DEMPSEY J M, ZHAI C, MCGARRAUGH H H, et al. High affinity threading of a new tetralactam macrocycle in water by fluorescent deep-red and near-infrared squaraine dyes[J]. Chemical Communications, 2019, 55(85): 12793-12796.
[62] ROLAND F M, PECK E M, RICE D R, et al. Preassembled fluorescent multivalent probes for the imaging of anionic membranes[J]. Bioconjugate Chemistry, 2017, 28(4): 1093-1101.
[63] ZHAI C, SCHREIBER C L, PADILLA-COLEY S, et al. Fluorescent self-threaded peptide probes for biological imaging[J]. Angewandte Chemie International Edition, 2020, 59(52): 23740-23747.
[64] DHARMARWARDANA M, DEMPSEY J M, PADILLA-COLEY S, et al. Supramolecular capture of highly polar amidosquaraine dye in water with nanomolar affinity and large turn-on fluorescence[J]. Journal of the American Chemical Society, 2021, 57(99): 13518-13521.
[65] YANG LP, ZHANG L, QUAN M, et al. A supramolecular system that strictly follows the binding mechanism of conformational selection[J]. Nature Communications, 2020, 11(1): 2740.
[66] WANG LL, TU YK, YAO H, et al. 2,3-Dibutoxynaphthalene-based tetralactam macrocycles for recognizing precious metal chloride complexes[J]. Beilstein Journal of Organic Chemistry, 2019, 15: 1460-1467.
[67] WANG LL, TU YK, VALKONEN A, et al. Selective recognition of phenazine by 2,6dibutoxylnaphthalene-Based tetralactam macrocycle[J]. Chinese Journal of Chemistry, 2019, 37(9): 892-896.
[68] THAKUR K, TOMAR S K, SINGH A K, et al. Riboflavin and health: a review of recent human research[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(17): 3650-3660.
[69] SHERAZ M A, KAZI S H, AHMED S, et al. Photo, thermal and chemical degradation of riboflavin[J]. Beilstein Journal of Organic Chemistry, 2014, 10: 1999-2012.
[70] LOUKAS Y L. A Plackett–Burnam screening design directs the efficient formulation of multicomponent DRV liposomes[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 26(2): 255-263.
[71] ASKER A, HABIB M. Effect of certain stabilizers on photobleacing of riboflavin solutions[J]. Drug Development and Industrial Pharmacy, 2008, 16: 149 -156.
[72] AHMAD I, ARSALAN A, ALI S A, et al. Formulation and stabilization of norfloxacin in liposomal preparations[J]. European Journal of Pharmaceutical Science s, 2016, 91: 208-215.
[73] LOUKAS Y L, JAYASEKERA P, GREGORIADIS G. Characterization and photoprotection studies of a model γ-cyclodextrin-included photolabile drug entrapped in liposomes incorporating light absorbers[J]. The Journal of Physical Chemistry, 1995, 99(27): 11035-11040.
[74] TEREKHOVA I V, TIKHOVA M N, VOLKOVA T V, et al. Inclusion complex formation of α- and β-cyclodextrins with riboflavin and alloxazine in aqueous solution: thermodynamic study[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistr y, 2011, 69(1): 167-172.
[75] TEREKHOVA I, KOŹBIAŁ M, KUMEEV R, et al. Inclusion complex formation between modified cyclodextrins and riboflvin and alloxazine in aqueous solution[J]. Journal of Solution Chemistry, 2011, 40: 1435-1446.
[76] KARPOWICH N K, SONG J, WANG DN. An aromatic cap seals the substrate binding site in an ECF-type S subunit for riboflavin[J]. Journal of Molecular Biology, 2016, 428(15): 3118-3130.
[77] DUURKENS R H, TOL M B, GEERTSMA E R, et al. Flavin binding to the high affinity riboflavin transporter RibU[J]. Journal of Biological Chemistry, 2007, 282(14): 1038010386.
[78] KLEIN E, CRUMP M P, DAVIS A P. Carbohydrate recognition in water by a tricyclic polyamide receptor[J]. Angewandte Chemie International Edition, 2005, 44(2): 298302.
[79] BIEDERMANN F, NAU W M, SCHNEIDER H-J. The Hydrophobic effect revisitedstudies with supramolecular complexes imply high-energy water as a noncovalent driving force[J]. Angewandte Chemie International Edition, 2014, 53(42): 11158 11171.
[80] ZHOU Y, JUNYONG S, YU H, et al. Inclusion complex of riboflavin with cucurbit
[7]uril: Study in solution and solid state[J]. Supramolecular Chemistry, 2009, 21: 495-501.
[81] CHAI J-D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10(44): 6615-6620.
[82] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396.
[83] KROMANN J C, STEINMANN C, JENSEN J H. Improving solvation energy predictions using the SMD solvation method and semiempirical electronic structure methods[J]. The Journal of Chemical Physics, 2018, 149(10): 104102.
[84] AHMAD I, AHMED S, ANWAR Z, et al. Photostability and photostabilization of drugs and drug products[J]. International Journal of Photoenergy, 2016, 2016: 8135608.
[85] KRAMER J, KANG R, GRIMM L M, et al. Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids[J]. Chemical Reviews, 2022, 122(3): 3459-3636.
[86] SINDELAR V, CEJAS M A, RAYMO F M, et al. Supramolecular assembly of 2,7dimethyldiazapyrenium and cucurbit
[8]uril: a new fluorescent host for detection of catechol and dopamine[J]. Chemistry–A European Journal, 2005, 11(23): 7054-7059.
[87] LING Y, WANG W, KAIFER A E. A new cucurbit
[8]uril-based fluorescent receptor for indole derivatives[J]. Chemical Communications, 2007(6): 610-612.
[88] BARBA-BON A, PAN Y-C, BIEDERMANN F, et al. Fluorescence monitoring of peptide transport pathways into large and giant vesicles by supramolecular host–dye reporter pairs[J]. Journal of the American Chemical Society, 2019, 141(51): 20137 20145.
[89] BIEDERMANN F, GHALE G, HENNIG A, et al. Fluorescent artificial receptor -based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability[J]. Communications Biology, 2020, 3(1): 383.
[90] ZHANG S, ASSAF K I, HUANG C, et al. Ratiometric DNA sensing with a host–guest FRET pair[J]. Chemical Communications, 2019, 55(5): 671-674.
[91] SINGH V R, SINGH P K. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution[J]. Journal of Materials Chemistry B, 2020, 8(6): 1182-1190.
[92] ZHENG Z, GENG WC, GAO J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene[J]. Chemical Science, 2018, 9(8): 2087-2091.
[93] CHEN J, HICKEY B L, WANG L, et al. Selective discrimination and classification of G-quadruplex structures with a host-guest sensing array[J]. Nature Chemistry, 2021, 13(5): 488-495.
[94] CHEN J, GILL A D, HICKEY B L, et al. Machine learning aids classification and discrimination of noncanonical DNA folding motifs by an arrayed host/guest sensing system[J]. Journal of the American Chemical Society, 2021, 143(32): 12791-12799.
[95] KUMAR C V, TURNER R S, ASUNCION E H. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 74(2): 231-238.
[96] WAINWRIGHT M. Photoinactivation of viruses[J]. Photochemical & Photobiological Sciences, 2004, 3(5): 406-411.
[97] FUJIMOTO B S, CLENDENNING J B, DELROW J J, et al. Fluorescence and photobleaching studies of methylene blue binding to DNA[J]. The Journal of Physical Chemistry, 1994, 98(26): 6633-6643.
[98] CAO X, TOLBERT R W, MCHALE J L, et al. Theoretical study of solvent effects on the intramolecular charge transfer of a hemicyanine dye[J]. The Journal of Physical Chemistry A, 1998, 102(17): 2739-2748.

所在学位评定分委会
化学系
国内图书分类号
O62
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343016
专题理学院_化学系
推荐引用方式
GB/T 7714
张鸿. 水溶性萘基四内酰胺大环的合成及其分子识别研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930077-张鸿-化学系.pdf(8192KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张鸿]的文章
百度学术
百度学术中相似的文章
[张鸿]的文章
必应学术
必应学术中相似的文章
[张鸿]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。