中文版 | English
题名

剪接子成分USP39在B细胞发育和分化中的作用及机制研究

其他题名
RESEARCH ON FUNCTION AND MECHANISM OF USP39 AS SPLICEOSOME COMPONENT IN BCELL DEVELOPMENT AND DIFFERENTIATION
姓名
姓名拼音
RUAN Guixin
学号
11749334
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
欧西军
导师单位
生物系
论文答辩日期
2022-05
论文提交日期
2022-06-27
学位授予单位
哈尔滨工业大学
学位授予地点
深圳
摘要

成人的B细胞发育自骨髓造血干细胞开始,分化形成分泌抗体的浆细胞,经历了诸如B细胞受体基因重排、转录调控以及转录后调控等一系列的调控与筛选。剪接子介导的RNA剪接是转录后调控中重要的一环,主要负责去除前体mRNA中内含子。此外,RNA剪接也与转录、染色质塑形有关。近年来,越来越多的研究表明,RNA剪接在免疫细胞的发育分化中有着重要的调控作用。而异常的RNA剪接也与诸如免疫细胞肿瘤、免疫缺陷病等疾病的发生息息相关。本文中所关注的泛素特异性肽酶39USP39)是剪接子中U4/U6.U5小核核糖核蛋白三聚体(tri-snRNP)的组分之一,对tri-snRNP的组装以及活化剪接子前体的形成有着重要的调控作用。近年来有诸多报道表明USP39参与了肿瘤的发生和发展,然而USP39B细胞发育和分化中扮演怎样的角色、通过何种机制进行调控尚有待探索。

本研究首先通过Cre-lox敲除系统构建了在B细胞中特异性敲除Usp39的转基因小鼠,研究了Usp39B细胞中的生物学功能。实验结果表明,在B细胞发育早期敲除Usp39导致了骨髓及外周淋巴器官中B细胞数量的显著减少,但并不影响成熟B细胞的分化。这些结果证明Usp39对于B细胞的发育是必须的。而对B细胞免疫反应的评价结果表明,Usp39的缺失并不影响B细胞活化,也未显著改变T细胞依赖以及非依赖的免疫反应水平。以上结果表明Usp39B细胞发育而非免疫反应中有重要的生物学功能。

本研究进一步解析了Usp39B细胞早期发育中的功能及机制通路。在B细胞发育更早期敲除Usp39导致小鼠外周淋巴器官中的B细胞几近消失,骨髓B细胞的发育被完全阻滞在pre-pro B细胞阶段。结合早期敲除小鼠pro Bpre B细胞发育受阻的实验结果,证明Usp39的主要功能是促进B细胞通过早期发育检查点。全转录组测序分析、B细胞受体分析以及诸多实验结果表明,Usp39这一功能并不由细胞增殖或细胞凋亡介导,也不通过转录调控实现,而是通过调控重链的重排、进而影响重链与轻链的合成得以实现。此外,通过引入重排完成的IgM以重塑B细胞受体可以使敲除小鼠骨髓B细胞重新顺利通过发育检查点,并使其外周B细胞恢复至野生型水平。以上结果表明,Usp39通过调控B细胞受体重排来促进B细胞通过发育检查点。

本研究最后明确了Usp39调控B细胞受体重排的分子机制。对B细胞中RNA剪接水平的评价结果表明,Usp39的缺失并没有从整体以及重链局部影响RNA的剪接。但突变其负责介导tri-snRNP组装的活性位点,Usp39丧失了促进B细胞发育的功能。以上结果证明Usp39调控B细胞发育的功能依赖于剪接子的组装,而非RNA的剪接。对B细胞受体重排中顺式与反式调控元件的评价结果表明,Usp39并非通过影响反式调控元件Rag重组酶的功能,而是调控了重链位点3’端顺式调控元件的相互作用,进而影响V区基因接近重排中心、参与重排反应。重链的染色质可接近性评价结果也表明,3’端染色质开放区域集中在重排中心相关位点。以上结果证明Usp39通过调控重链基因位点染色质的相互作用调节重链重排。此外,本文进一步探索了Usp39B细胞淋巴瘤发生中的作用。在淋巴瘤模型小鼠中敲除Usp39可以显著延长小鼠的无瘤存活周期,并明显减少肿瘤样B细胞的产生。这些结果证明Usp39作为B细胞淋巴瘤治疗的靶点具有潜在的可能性。

综上所述,本研究通过免疫学、分子生物学以及多组学手段,首次揭示了Usp39B细胞早期发育调控中的生物学功能,阐明了Usp39通过调控B细胞受体重排促进B细胞通过发育检查点的机制通路,并进一步证明了Usp39通过剪接子依赖的方式调控染色质相互作用、进而影响重链重排。基于该理论,本研究还证实了Usp39可以作为B细胞淋巴瘤治疗的潜在靶点。以上研究结果为剪接子调控B细胞发育提供了一种新的理论基础,也为通过剪接子相关途径治疗B细胞肿瘤提供了理论可能。

关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-07
参考文献列表

[1] KUROSAKI T, SHINOHARA H, BABA Y. B cell signaling and fate decision[J]. Annu Rev Immunol, 2010, 28: 21-55.
[2] NUTT S L, KEE B L. The transcriptional regulation of B cell lineage commitment[J]. Immunity, 2007, 26(6): 715-25.
[3] ZHENG Z, ZHANG L, CUI X L, et al. Control of early B cell development by the RNA N(6)-methyladenosine methylation[J]. Cell Rep, 2020, 31(13): 107819.
[4] PESTAL K, FUNK C C, SNYDER J M, et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development[J]. Immunity, 2015, 43(5): 933-44.
[5] WILKINSON M E, CHARENTON C, NAGAI K. RNA splicing by the spliceosome[J]. Annu Rev Biochem, 2020, 89: 359-88.
[6] HERZEL L, OTTOZ D S M, ALPERT T, et al. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function[J]. Nat Rev Mol Cell Biol, 2017, 18(10): 637-50.
[7] BONNET A, GROSSO A R, ELKAOUTARI A, et al. Introns protect eukaryotic genomes from transcription-associated genetic instability[J]. Mol Cell, 2017, 67(4): 608-21 e6.
[8] BLACK K L, NAQVI A S, ASNANI M, et al. Aberrant splicing in B-cell acute lymphoblastic leukemia[J]. Nucleic Acids Res, 2018, 46(21): 11357-69.
[9] SCOTTI M M, SWANSON M S. RNA mis-splicing in disease[J]. Nat Rev Genet, 2016, 17(1): 19-32.
[10] MAKAROVA O V, MAKAROV E M, LUHRMANN R. The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes[J]. EMBO J, 2001, 20(10): 2553-63.
[11] HADJIVASSILIOU H, ROSENBERG O S, GUTHRIE C. The crystal structure of S. cerevisiae Sad1, a catalytically inactive deubiquitinase that is broadly required for pre-mRNA splicing[J]. RNA, 2014, 20(5): 656-69.
[12] BERTRAM K, AGAFONOV D E, DYBKOV O, et al. Cryo-EM structure of a pre-catalytic human spliceosome primed for activation[J]. Cell, 2017, 170(4): 701-13 e11.
[13] WU J, CHEN Y, GENG G, et al. USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2[J]. Cancer Lett, 2019, 449: 114-24.
[14] LI X, YUAN J, SONG C, et al. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma[J]. Cell Death Differ, 2021, 28(8): 2315-32.
[15] HUANG Y, PAN X W, LI L, et al. Overexpression of USP39 predicts poor prognosis and promotes tumorigenesis of prostate cancer via promoting EGFR mRNA maturation and transcription elongation[J]. Oncotarget, 2016, 7(16): 22016-30.
[16] MANDEL E M, GROSSCHEDL R. Transcription control of early B cell differentiation[J]. Curr Opin Immunol, 2010, 22(2): 161-7.
[17] ULLRICH S, GUIGO R. Dynamic changes in intron retention are tightly associated with regulation of splicing factors and proliferative activity during B-cell development[J]. Nucleic Acids Res, 2020, 48(3): 1327-40.
[18] TURNER M, DIAZ-MUNOZ M D. RNA-binding proteins control gene expression and cell fate in the immune system[J]. Nat Immunol, 2018, 19(2): 120-9.
[19] HARDY R R, KINCADE P W, DORSHKIND K. The protean nature of cells in the B lymphocyte lineage[J]. Immunity, 2007, 26(6): 703-14.
[20] PROUDHON C, HAO B, RAVIRAM R, et al. Long-range regulation of V(D)J recombination[J]. Adv Immunol, 2015, 128: 123-82.
[21] NUSSENZWEIG M C, ALT F W. Antibody diversity: one enzyme to rule them all[J]. Nat Med, 2004, 10(12): 1304-5.
[22] LIU C, ZHANG Y, LIU C C, et al. Structural insights into the evolution of the RAG recombinase[J]. Nat Rev Immunol, 2021.
[23] TANAKA S, BABA Y. B cell receptor signaling[J]. Adv Exp Med Biol, 2020, 1254: 23-36.
[24] RUMFELT L L, ZHOU Y, ROWLEY B M, et al. Lineage specification and plasticity in CD19-early B cell precursors[J]. J Exp Med, 2006, 203(3): 675-87.
[25] MELCHERS F. Checkpoints that control B cell development[J]. J Clin Invest, 2015, 125(6): 2203-10.
[26] CAROTTA S, DAKIC A, D'AMICO A, et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner[J]. Immunity, 2010, 32(5): 628-41.
[27] ANDERSON K L, NELSON S L, PERKIN H B, et al. PU.1 is a lineage-specific regulator of tyrosine phosphatase CD45[J]. J Biol Chem, 2001, 276(10): 7637-42.
[28] KWON K, HUTTER C, SUN Q, et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development[J]. Immunity, 2008, 28(6): 751-62.
[29] LIN Y C, JHUNJHUNWALA S, BENNER C, et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate[J]. Nat Immunol, 2010, 11(7): 635-43.
[30] TREIBER T, MANDEL E M, POTT S, et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin[J]. Immunity, 2010, 32(5): 714-25.
[31] BANERJEE A, NORTHRUP D, BOUKARABILA H, et al. Transcriptional repression of Gata3 is essential for early B cell commitment[J]. Immunity, 2013, 38(5): 930-42.
[32] FUXA M, BUSSLINGER M. Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function[J]. J Immunol, 2007, 178(12): 8222-8.
[33] VERMA-GAUR J, TORKAMANI A, SCHAFFER L, et al. Noncoding transcription within the Igh distal V(H) region at PAIR elements affects the 3D structure of the Igh locus in pro-B cells[J]. Proc Natl Acad Sci U S A, 2012, 109(42): 17004-9.
[34] MCMANUS S, EBERT A, SALVAGIOTTO G, et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells[J]. EMBO J, 2011, 30(12): 2388-404.
[35] HOLMES M L, PRIDANS C, NUTT S L. The regulation of the B-cell gene expression programme by Pax5[J]. Immunol Cell Biol, 2008, 86(1): 47-53.
[36] XU L S, SOKALSKI K M, HOTKE K, et al. Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia[J]. J Immunol, 2012, 189(7): 3347-54.
[37] FERREIROS-VIDAL I, CARROLL T, TAYLOR B, et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation[J]. Blood, 2013, 121(10): 1769-82.
[38] MA S, PATHAK S, TRINH L, et al. Interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to down-regulate pre-B-cell receptor and promote cell-cycle withdrawal in pre-B-cell development[J]. Blood, 2008, 111(3): 1396-403.
[39] SWAMINATHAN S, HUANG C, GENG H, et al. BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint[J]. Nat Med, 2013, 19(8): 1014-22.
[40] GREIG K T, DE GRAAF C A, MURPHY J M, et al. Critical roles for c-Myb in lymphoid priming and early B-cell development[J]. Blood, 2010, 115(14): 2796-805.
[41] NIEBUHR B, KRIEBITZSCH N, FISCHER M, et al. Runx1 is essential at two stages of early murine B-cell development[J]. Blood, 2013, 122(3): 413-23.
[42] OCHIAI K, MAIENSCHEIN-CLINE M, MANDAL M, et al. A self-reinforcing regulatory network triggered by limiting IL-7 activates pre-BCR signaling and differentiation[J]. Nat Immunol, 2012, 13(3): 300-7.
[43] VU L T, TSUKAHARA T. C-to-U editing and site-directed RNA editing for the correction of genetic mutations[J]. Biosci Trends, 2017, 11(3): 243-53.
[44] YABLONOVITCH A L, DENG P, JACOBSON D, et al. The evolution and adaptation of A-to-I RNA editing[J]. PLoS Genet, 2017, 13(11): e1007064.
[45] EISENBERG E, LEVANON E Y. A-to-I RNA editing - immune protector and transcriptome diversifier[J]. Nat Rev Genet, 2018, 19(8): 473-90.
[46] MARCU-MALINA V, GOLDBERG S, VAX E, et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow[J]. Oncotarget, 2016, 7(34): 54370-9.
[47] ZHAO B S, ROUNDTREE I A, HE C. Post-transcriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1): 31-42.
[48] DENG L J, DENG W Q, FAN S R, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond[J]. Mol Cancer, 2022, 21(1): 52.
[49] GRENOV A C, MOSS L, EDELHEIT S, et al. The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers[J]. J Exp Med, 2021, 218(10).
[50] NAIR L, ZHANG W, LAFFLEUR B, et al. Mechanism of noncoding RNA-associated N(6)-methyladenosine recognition by an RNA processing complex during IgH DNA recombination[J]. Mol Cell, 2021, 81(19): 3949-64 e7.
[51] CHENG Y, FU Y, WANG Y, et al. The m6A methyltransferase METTL3 is functionally implicated in DLBCL development by regulating m6A modification in PEDF[J]. Front Genet, 2020, 11: 955.
[52] HAN H, FAN G, SONG S, et al. piRNA-30473 contributes to tumorigenesis and poor prognosis by regulating m6A RNA methylation in DLBCL[J]. Blood, 2021, 137(12): 1603-14.
[53] SCHOENBERG D R, MAQUAT L E. Regulation of cytoplasmic mRNA decay[J]. Nat Rev Genet, 2012, 13(4): 246-59.
[54] LABNO A, TOMECKI R, DZIEMBOWSKI A. Cytoplasmic RNA decay pathways-Enzymes and mechanisms[J]. Biochim Biophys Acta, 2016, 1863(12): 3125-47.
[55] NASIF S, CONTU L, MUHLEMANN O. Beyond quality control: The role of nonsense-mediated mRNA decay (NMD) in regulating gene expression[J]. Semin Cell Dev Biol, 2018, 75: 78-87.
[56] INOUE T, MORITA M, HIJIKATA A, et al. CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability[J]. J Exp Med, 2015, 212(9): 1465-79.
[57] YANG C Y, RAMAMOORTHY S, BOLLER S, et al. Interaction of CCR4-NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis[J]. Genes Dev, 2016, 30(20): 2310-24.
[58] GALLOWAY A, SAVELIEV A, LUKASIAK S, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence[J]. Science, 2016, 352(6284): 453-9.
[59] ZHANG L, REYNOLDS T L, SHAN X, et al. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis[J]. Immunity, 2011, 34(2): 163-74.
[60] NEWMAN R, AHLFORS H, SAVELIEV A, et al. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1[J]. Nat Immunol, 2017, 18(6): 683-93.
[61] HUANG H, ZHANG G, RUAN G X, et al. Mettl14-mediated m6A modification is essential for germinal center B cell response[J]. J Immunol, 2022, 208(8): 1924-36.
[62] SHI Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome[J]. Nat Rev Mol Cell Biol, 2017, 18(11): 655-70.
[63] PAN Q, SHAI O, LEE L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nat Genet, 2008, 40(12): 1413-5.
[64] WANG E T, SANDBERG R, LUO S, et al. Alternative isoform regulation in human tissue transcriptomes[J]. Nature, 2008, 456(7221): 470-6.
[65] KIM M S, PINTO S M, GETNET D, et al. A draft map of the human proteome[J]. Nature, 2014, 509(7502): 575-81.
[66] SHI Y. The Spliceosome: A protein-directed metalloribozyme[J]. J Mol Biol, 2017, 429(17): 2640-53.
[67] MATERA A G, WANG Z. A day in the life of the spliceosome[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 108-21.
[68] PLASCHKA C, LIN P C, CHARENTON C, et al. Prespliceosome structure provides insights into spliceosome assembly and regulation[J]. Nature, 2018, 559(7714): 419-22.
[69] ZHANG X, YAN C, HANG J, et al. An atomic structure of the human spliceosome[J]. Cell, 2017, 169(5): 918-29 e14.
[70] RAUHUT R, FABRIZIO P, DYBKOV O, et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome[J]. Science, 2016, 353(6306): 1399-405.
[71] OHRT T, ODENWALDER P, DANNENBERG J, et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system[J]. RNA, 2013, 19(7): 902-15.
[72] SCHWER B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release[J]. Mol Cell, 2008, 30(6): 743-54.
[73] ULE J, BLENCOWE B J. Alternative splicing regulatory networks: functions, mechanisms, and evolution[J]. Mol Cell, 2019, 76(2): 329-45.
[74] SHEPARD P J, HERTEL K J. The SR protein family[J]. Genome Biol, 2009, 10(10): 242.
[75] GEUENS T, BOUHY D, TIMMERMAN V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016, 135(8): 851-67.
[76] SHARMA S, MARIS C, ALLAIN F H, et al. U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression[J]. Mol Cell, 2011, 41(5): 579-88.
[77] BONNAL S, MARTINEZ C, FORCH P, et al. RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition[J]. Mol Cell, 2008, 32(1): 81-95.
[78] CHEN C D, KOBAYASHI R, HELFMAN D M. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene[J]. Genes Dev, 1999, 13(5): 593-606.
[79] BURATTI E, STUANI C, DE PRATO G, et al. SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer[J]. Nucleic Acids Res, 2007, 35(13): 4359-68.
[80] CHIOU N T, SHANKARLING G, LYNCH K W. hnRNP L and hnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly[J]. Mol Cell, 2013, 49(5): 972-82.
[81] KOSTER T, STAIGER D. RNA-binding protein immunoprecipitation and high-throughput sequencing[J]. Methods Mol Biol, 2021, 2200: 453-61.
[82] STERNBURG E L, KARGINOV F V. Global approaches in studying RNA-binding protein interaction networks[J]. Trends Biochem Sci, 2020, 45(7): 593-603.
[83] KWAK H, LIS J T. Control of transcriptional elongation[J]. Annu Rev Genet, 2013, 47: 483-508.
[84] DAS R, DUFU K, ROMNEY B, et al. Functional coupling of RNAP II transcription to spliceosome assembly[J]. Genes Dev, 2006, 20(9): 1100-9.
[85] WARF M B, BERGLUND J A. Role of RNA structure in regulating pre-mRNA splicing[J]. Trends Biochem Sci, 2010, 35(3): 169-78.
[86] SPILUTTINI B, GU B, BELAGAL P, et al. Splicing-independent recruitment of U1 snRNP to a transcription unit in living cells[J]. J Cell Sci, 2010, 123(Pt 12): 2085-93.
[87] BRODY Y, NEUFELD N, BIEBERSTEIN N, et al. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing[J]. PLoS Biol, 2011, 9(1): e1000573.
[88] ALMADA A E, WU X, KRIZ A J, et al. Promoter directionality is controlled by U1 snRNP and polyadenylation signals[J]. Nature, 2013, 499(7458): 360-3.
[89] CHIU A C, SUZUKI H I, WU X, et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP[J]. Mol Cell, 2018, 69(4): 648-63 e7.
[90] REED R, HURT E. A conserved mRNA export machinery coupled to pre-mRNA splicing[J]. Cell, 2002, 108(4): 523-31.
[91] MOORE M J, PROUDFOOT N J. Pre-mRNA processing reaches back to transcription and ahead to translation[J]. Cell, 2009, 136(4): 688-700.
[92] BATSCHE E, YANIV M, MUCHARDT C. The human SWI/SNF subunit Brm is a regulator of alternative splicing[J]. Nat Struct Mol Biol, 2006, 13(1): 22-9.
[93] CAVELLAN E, ASP P, PERCIPALLE P, et al. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription[J]. J Biol Chem, 2006, 281(24): 16264-71.
[94] KFIR N, LEV-MAOR G, GLAICH O, et al. SF3B1 association with chromatin determines splicing outcomes[J]. Cell Rep, 2015, 11(4): 618-29.
[95] LUCO R F, PAN Q, TOMINAGA K, et al. Regulation of alternative splicing by histone modifications[J]. Science, 2010, 327(5968): 996-1000.
[96] ZHOU H L, LUO G, WISE J A, et al. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms[J]. Nucleic Acids Res, 2014, 42(2): 701-13.
[97] GELFMAN S, COHEN N, YEARIM A, et al. DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure[J]. Genome Res, 2013, 23(5): 789-99.
[98] ZHOU H L, HINMAN M N, BARRON V A, et al. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner[J]. Proc Natl Acad Sci U S A, 2011, 108(36): E627-35.
[99] KIM S, KIM H, FONG N, et al. Pre-mRNA splicing is a determinant of histone H3K36 methylation[J]. Proc Natl Acad Sci U S A, 2011, 108(33): 13564-9.
[100] DE ALMEIDA S F, GROSSO A R, KOCH F, et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36[J]. Nat Struct Mol Biol, 2011, 18(9): 977-83.
[101] YUAN W, XIE J, LONG C, et al. Heterogeneous nuclear ribonucleoprotein L Is a subunit of human KMT3a/Set2 complex required for H3 Lys-36 trimethylation activity in vivo[J]. J Biol Chem, 2009, 284(23): 15701-7.
[102] CONVERTINI P, SHEN M, POTTER P M, et al. Sudemycin E influences alternative splicing and changes chromatin modifications[J]. Nucleic Acids Res, 2014, 42(8): 4947-61.
[103] YABAS M, ELLIOTT H, HOYNE G F. The Role of alternative splicing in the control of immune homeostasis and cellular differentiation[J]. Int J Mol Sci, 2015, 17(1).
[104] CHABOT B, SHKRETA L. Defective control of pre-messenger RNA splicing in human disease[J]. J Cell Biol, 2016, 212(1): 13-27.
[105] LYGEROU Z, CHRISTOPHIDES G, SERAPHIN B. A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing[J]. Mol Cell Biol, 1999, 19(3): 2008-20.
[106] PLASCHKA C, LIN P C, NAGAI K. Structure of a pre-catalytic spliceosome[J]. Nature, 2017, 546(7660): 617-21.
[107] HUANG Y H, CHUNG C S, KAO D I, et al. Sad1 counteracts Brr2-mediated dissociation of U4/U6.U5 in tri-snRNP homeostasis[J]. Mol Cell Biol, 2014, 34(2): 210-20.
[108] SOWA M E, BENNETT E J, GYGI S P, et al. Defining the human deubiquitinating enzyme interaction landscape[J]. Cell, 2009, 138(2): 389-403.
[109] JERONIMO C, FORGET D, BOUCHARD A, et al. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme[J]. Mol Cell, 2007, 27(2): 262-74.
[110] VAN LEUKEN R J, LUNA-VARGAS M P, SIXMA T K, et al. Usp39 is essential for mitotic spindle checkpoint integrity and controls mRNA-levels of aurora B[J]. Cell Cycle, 2008, 7(17): 2710-9.
[111] ZHAO Y, ZHANG B, LEI Y, et al. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma[J]. Tumour Biol, 2016, 37(10): 13167-76.
[112] YAN C, YUAN J, XU J, et al. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT[J]. Med Oncol, 2019, 36(11): 95.
[113] DING K, JI J, ZHANG X, et al. RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation[J]. Oncogene, 2019, 38(37): 6414-28.
[114] YUAN J, ZHANG G, LI X, et al. Knocking down USP39 inhibits the growth and metastasis of non-small-cell lung cancer cells through activating the p53 pathway[J]. Int J Mol Sci, 2020, 21(23).
[115] DONG X, LIU Z, ZHANG E, et al. USP39 promotes tumorigenesis by stabilizing and deubiquitinating SP1 protein in hepatocellular carcinoma[J]. Cell Signal, 2021, 85: 110068.
[116] YUAN J, LI X, ZHANG G, et al. USP39 mediates p21-dependent proliferation and neoplasia of colon cancer cells by regulating the p53/p21/CDC2/cyclin B1 axis[J]. Mol Carcinog, 2021, 60(4): 265-78.
[117] YUAN J, LI X, ZHANG Y, et al. USP39 attenuates the antitumor activity of cisplatin on colon cancer cells dependent on p53[J]. Cell Biol Toxicol, 2021.
[118] WANG S, WANG Z, LI J, et al. Splicing factor USP39 promotes ovarian cancer malignancy through maintaining efficient splicing of oncogenic HMGA2[J]. Cell Death Dis, 2021, 12(4): 294.
[119] PAN X W, XU D, CHEN W J, et al. USP39 promotes malignant proliferation and angiogenesis of renal cell carcinoma by inhibiting VEGF-A165b alternative splicing via regulating SRSF1 and SRPK1[J]. Cancer Cell Int, 2021, 21(1): 486.
[120] FRAILE J M, MANCHADO E, LUJAMBIO A, et al. USP39 deubiquitinase is essential for KRAS oncogene-driven cancer[J]. J Biol Chem, 2017, 292(10): 4164-75.
[121] PENG Y, GUO J, SUN T, et al. USP39 serves as a deubiquitinase to stabilize STAT1 and sustains type I IFN-induced antiviral immunity[J]. J Immunol, 2020, 205(11): 3167-78.
[122] KIM J J, LEE S Y, HWANG Y, et al. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing[J]. Nucleic Acids Res, 2021, 49(19): 11083-102.
[123] RIOS Y, MELMED S, LIN S, et al. Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion[J]. PLoS Genet, 2011, 7(1): e1001271.
[124] ERGUN A, DORAN G, COSTELLO J C, et al. Differential splicing across immune system lineages[J]. Proc Natl Acad Sci U S A, 2013, 110(35): 14324-9.
[125] TOUNG J M, MORLEY M, LI M, et al. RNA-sequence analysis of human B-cells[J]. Genome Res, 2011, 21(6): 991-8.
[126] HERMISTON M L, XU Z, WEISS A. CD45: a critical regulator of signaling thresholds in immune cells[J]. Annu Rev Immunol, 2003, 21: 107-37.
[127] HATHCOCK K S, HIRANO H, MURAKAMI S, et al. CD45 expression by B cells. Expression of different CD45 isoforms by subpopulations of activated B cells[J]. J Immunol, 1992, 149(7): 2286-94.
[128] MCNEILL L, CASSADY R L, SARKARDEI S, et al. CD45 isoforms in T cell signalling and development[J]. Immunol Lett, 2004, 92(1-2): 125-34.
[129] BEVERLEY P C, DASER A, MICHIE C A, et al. Functional subsets of T cells defined by isoforms of CD45[J]. Biochem Soc Trans, 1992, 20(1): 184-7.
[130] PREUSSNER M, SCHREINER S, HUNG L H, et al. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing[J]. Nucleic Acids Res, 2012, 40(12): 5666-78.
[131] PIOLI P D, DEBNATH I, WEIS J J, et al. Zfp318 regulates IgD expression by abrogating transcription termination within the Ighm/Ighd locus[J]. J Immunol, 2014, 193(5): 2546-53.
[132] ENDERS A, SHORT A, MIOSGE L A, et al. Zinc-finger protein ZFP318 is essential for expression of IgD, the alternatively spliced Igh product made by mature B lymphocytes[J]. Proc Natl Acad Sci U S A, 2014, 111(12): 4513-8.
[133] XU Y, ZHOU H, POST G, et al. Rad52 mediates class-switch DNA recombination to IgD[J]. Nat Commun, 2022, 13(1): 980.
[134] MA J, GUNDERSON S I, PHILLIPS C. Non-snRNP U1A levels decrease during mammalian B-cell differentiation and release the IgM secretory poly(A) site from repression[J]. RNA, 2006, 12(1): 122-32.
[135] ANAND S, BATISTA F D, TKACH T, et al. Multiple transcripts of the murine immunoglobulin epsilon membrane locus are generated by alternative splicing and differential usage of two polyadenylation sites[J]. Mol Immunol, 1997, 34(2): 175-83.
[136] BENSON M J, AIJO T, CHANG X, et al. Heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL) and elongation factor, RNA polymerase II, 2 (ELL2) are regulators of mRNA processing in plasma cells[J]. Proc Natl Acad Sci U S A, 2012, 109(40): 16252-7.
[137] BEGUM N A, HAQUE F, STANLIE A, et al. Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition[J]. EMBO J, 2021, 40(12): e106393.
[138] KANEHIRO Y, TODO K, NEGISHI M, et al. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1[J]. Proc Natl Acad Sci U S A, 2012, 109(4): 1216-21.
[139] SINGH A K, TAMRAKAR A, JAISWAL A, et al. SRSF1-3, a splicing and somatic hypermutation regulator, controls transcription of IgV genes via chromatin regulators SATB2, UBN1 and histone variant H3.3[J]. Mol Immunol, 2020, 119: 69-82.
[140] KUMAR SINGH A, TAMRAKAR A, JAISWAL A, et al. Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID[J]. Mol Immunol, 2019, 116: 63-72.
[141] NOWAK U, MATTHEWS A J, ZHENG S, et al. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA[J]. Nat Immunol, 2011, 12(2): 160-6.
[142] JIN W, NIU Z, XU D, et al. RBM5 promotes exon 4 skipping of AID pre-mRNA by competing with the binding of U2AF65 to the polypyrimidine tract[J]. FEBS Lett, 2012, 586(21): 3852-7.
[143] MONZON-CASANOVA E, MATHESON L S, TABBADA K, et al. Polypyrimidine tract-binding proteins are essential for B cell development[J]. Elife, 2020, 9.
[144] MONZON-CASANOVA E, BATES K J, SMITH C W J, et al. Essential requirement for polypyrimidine tract binding proteins 1 and 3 in the maturation and maintenance of mature B cells in mice[J]. Eur J Immunol, 2021, 51(9): 2266-73.
[145] MONZON-CASANOVA E, SCREEN M, DIAZ-MUNOZ M D, et al. The RNA-binding protein PTBP1 is necessary for B cell selection in germinal centers[J]. Nat Immunol, 2018, 19(3): 267-78.
[146] DIAZ-MUNOZ M D, BELL S E, FAIRFAX K, et al. The RNA-binding protein HuR is essential for the B cell antibody response[J]. Nat Immunol, 2015, 16(4): 415-25.
[147] CHANG X, LI B, RAO A. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation[J]. Proc Natl Acad Sci U S A, 2015, 112(15): E1888-97.
[148] DIAZ-MUNOZ M D, MONZON-CASANOVA E, TURNER M. Characterization of the B cell transcriptome bound by RNA-binding proteins with iCLIP[J]. Methods Mol Biol, 2017, 1623: 159-79.
[149] MALCOVATI L, PAPAEMMANUIL E, BOWEN D T, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms[J]. Blood, 2011, 118(24): 6239-46.
[150] GRAUBERT T A, SHEN D, DING L, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes[J]. Nat Genet, 2011, 44(1): 53-7.
[151] YOSHIDA K, SANADA M, SHIRAISHI Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia[J]. Nature, 2011, 478(7367): 64-9.
[152] FANG J, BOLANOS L C, CHOI K, et al. Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia[J]. Nat Immunol, 2017, 18(2): 236-45.
[153] CHEN L, TOVAR-CORONA J M, URRUTIA A O. Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts[J]. Hum Mol Genet, 2011, 20(22): 4422-9.
[154] DVINGE H, BRADLEY R K. Widespread intron retention diversifies most cancer transcriptomes[J]. Genome Med, 2015, 7(1): 45.
[155] PUENTE X S, BEA S, VALDES-MAS R, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia[J]. Nature, 2015, 526(7574): 519-24.
[156] TAYLOR J, LEE S C. Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies[J]. Genes Chromosomes Cancer, 2019, 58(12): 889-902.
[157] LEE S C, ABDEL-WAHAB O. Therapeutic targeting of splicing in cancer[J]. Nat Med, 2016, 22(9): 976-86.
[158] WANG L, LAWRENCE M S, WAN Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia[J]. N Engl J Med, 2011, 365(26): 2497-506.
[159] ROSSI D, BRUSCAGGIN A, SPINA V, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness[J]. Blood, 2011, 118(26): 6904-8.
[160] SOTILLO E, BARRETT D M, BLACK K L, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy[J]. Cancer Discov, 2015, 5(12): 1282-95.
[161] WU X, DARCE J R, CHANG S K, et al. Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells[J]. Blood, 2008, 112(12): 4675-82.
[162] GALLARDO M, MALANEY P, AITKEN M J L, et al. Uncovering the role of RNA-binding protein hnRNP K in B-cell lymphomas[J]. J Natl Cancer Inst, 2020, 112(1): 95-106.
[163] KOZYREV S V, ABELSON A K, WOJCIK J, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus[J]. Nat Genet, 2008, 40(2): 211-6.
[164] MI H, MURUGANUJAN A, HUANG X, et al. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0)[J]. Nat Protoc, 2019, 14(3): 703-21.
[165] BOLOTIN D A, POSLAVSKY S, DAVYDOV A N, et al. Antigen receptor repertoire profiling from RNA-seq data[J]. Nat Biotechnol, 2017, 35(10): 908-11.
[166] SHUGAY M, BAGAEV D V, TURCHANINOVA M A, et al. VDJtools: unifying post-analysis of T cell receptor repertoires[J]. PLoS Comput Biol, 2015, 11(11): e1004503.
[167] SUBRAHMANYAM R, DU H, IVANOVA I, et al. Localized epigenetic changes induced by DH recombination restricts recombinase to DJH junctions[J]. Nat Immunol, 2012, 13(12): 1205-12.
[168] GUO C, YOON H S, FRANKLIN A, et al. CTCF-binding elements mediate control of V(D)J recombination[J]. Nature, 2011, 477(7365): 424-30.
[169] YEO G, BURGE C B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals[J]. J Comput Biol, 2004, 11(2-3): 377-94.
[170] SHEN S, PARK J W, LU Z X, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proc Natl Acad Sci U S A, 2014, 111(51): E5593-601.
[171] BOLLAND D J, WOOD A L, AFSHAR R, et al. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu[J]. Mol Cell Biol, 2007, 27(15): 5523-33.
[172] TRANCOSO I, BONNET M, GARDNER R, et al. A Novel quantitative fluorescent reporter assay for RAG targets and RAG activity[J]. Front Immunol, 2013, 4: 110.
[173] HOLMES R, ZUNIGA-PFLUCKER J C. The OP9-DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro[J]. Cold Spring Harb Protoc, 2009, 2009(2): pdb prot5156.
[174] RAO S S, HUNTLEY M H, DURAND N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J]. Cell, 2014, 159(7): 1665-80.
[175] NIU L, SHEN W, HUANG Y, et al. Amplification-free library preparation with SAFE Hi-C uses ligation products for deep sequencing to improve traditional Hi-C analysis[J]. Commun Biol, 2019, 2: 267.
[176] SEBINA I, PEPPER M. Humoral immune responses to infection: common mechanisms and unique strategies to combat pathogen immune evasion tactics[J]. Curr Opin Immunol, 2018, 51: 46-54.
[177] HOBEIKA E, THIEMANN S, STORCH B, et al. Testing gene function early in the B cell lineage in mb1-cre mice[J]. Proc Natl Acad Sci U S A, 2006, 103(37): 13789-94.
[178] WANG L, CHEN T, LI X, et al. USP39 promotes ovarian cancer malignant phenotypes and carboplatin chemoresistance[J]. Int J Oncol, 2019, 55(1): 277-88.
[179] KITAMURA T, KOSHINO Y, SHIBATA F, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics[J]. Exp Hematol, 2003, 31(11): 1007-14.
[180] MASON D Y, JONES M, GOODNOW C C. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice[J]. Int Immunol, 1992, 4(2): 163-75.
[181] TENG G, SCHATZ D G. Regulation and evolution of the RAG recombinase[J]. Adv Immunol, 2015, 128: 1-39.
[182] KOTAKE Y, SAGANE K, OWA T, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide[J]. Nat Chem Biol, 2007, 3(9): 570-5.
[183] EBERT A, HILL L, BUSSLINGER M. Spatial Regulation of V-(D)J Recombination at Antigen Receptor Loci[J]. Adv Immunol, 2015, 128: 93-121.
[184] MARSHALL A J, WU G E, PAIGE G J. Frequency of VH81x usage during B cell development: initial decline in usage is independent of Ig heavy chain cell surface expression[J]. J Immunol, 1996, 156(6): 2077-84.
[185] BURGER J A, WIESTNER A. Targeting B cell receptor signalling in cancer: preclinical and clinical advances[J]. Nat Rev Cancer, 2018, 18(3): 148-67.
[186] RUSTAD E H, MISUND K, BERNARD E, et al. Stability and uniqueness of clonal immunoglobulin CDR3 sequences for MRD tracking in multiple myeloma[J]. Am J Hematol, 2019, 94(12): 1364-73.
[187] AGATHANGELIDIS A, CHATZIDIMITRIOU A, GEMENETZI K, et al. Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL[J]. Blood, 2021, 137(10): 1365-76.
[188] ADAMS J M, HARRIS A W, PINKERT C A, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice[J]. Nature, 1985, 318(6046): 533-8.
[189] KOH C M, BEZZI M, LOW D H, et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis[J]. Nature, 2015, 523(7558): 96-100.

所在学位评定分委会
生物系
国内图书分类号
Q344
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343020
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
阮桂鑫. 剪接子成分USP39在B细胞发育和分化中的作用及机制研究[D]. 深圳. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749334-阮桂鑫-生物系.pdf(20734KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[阮桂鑫]的文章
百度学术
百度学术中相似的文章
[阮桂鑫]的文章
必应学术
必应学术中相似的文章
[阮桂鑫]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。