中文版 | English
题名

Kindlin-2 在非酒精性脂肪肝发生进程中的作用探究

其他题名
The role of Kindlin-2 in the development of non-alcoholic fatty liver disease
姓名
姓名拼音
ZHONG Yiming
学号
11930165
学位类型
硕士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
导师
肖国芝
导师单位
南方科技大学医学院
论文答辩日期
2022-04-26
论文提交日期
2022-06-28
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

非酒精性脂肪性肝病(Nonalcoholic fatty liver disease,NAFLD)是目前最常见的慢性肝病,全球大约四分之一的人口患有NAFLD。但是目前为止,NAFLD的发病机制尚不完全清楚。在本研究中,我们发现在肥胖小鼠和NAFLD 患者肝脏中,Kindlin-2 表达显著上调。肝细胞Kindlin-2 单倍剂量不足可以在不影响小鼠的能量代谢的情况下,改善由高脂饮食(HFD)诱导的小鼠NAFLD 和葡萄糖不耐受。相反,在肝脏中过表达Kindlin-2 可加重NAFLD,引起肝细胞脂质代谢紊乱和炎症反应。同时体外细胞实验研究发现Kindlin-2 的c 端区域(aa 570-680)可以与FoxO1 结合。肝脏过表达FoxO1 可消除Kindlin-2 单倍剂量不足对小鼠NAFLD 的改善作用。最后,我们发现AAV8 介导的肝脏Kindlin-2 shRNA 敲低可减轻肥胖小鼠NAFLD。总的来说,我们证明Kindlin-2 可通过调节FoxO1 来预防非酒精性脂肪肝。因此本研究证明Kindlin-2 在缓解NAFLD 中发挥重要作用,为NAFLD的治疗提供了靶点。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-07
参考文献列表

[1] MACHADO M V, DIEHL A M. Pathogenesis of Nonalcoholic Steatohepatitis [J]. Gastroenterology, 2016, 150(8): 1769-77.
[2] MUNDI M S, VELAPATI S, PATEL J, et al. Evolution of NAFLD and Its Management [J]. Nutr Clin Pract, 2020, 35(1): 72-84.
[3] BYRNE C D, TARGHER G. NAFLD: a multisystem disease [J]. J Hepatol, 2015, 62(1 Suppl): S47-64.
[4] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes [J]. Hepatology, 2016, 64(1): 73-84.
[5] FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies [J]. Nat Med, 2018, 24(7): 908-22.
[6] ZHOU J, ZHOU F, WANG W, et al. Epidemiological Features of NAFLD From 1999 to 2018 in China [J]. Hepatology, 2020, 71(5): 1851-64.
[7] YOUNOSSI Z M. Non-alcoholic fatty liver disease - A global public health perspective [J]. J Hepatol, 2019, 70(3): 531-44.
[8] SINGH S, ALLEN A M, WANG Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies [J]. Clin Gastroenterol Hepatol, 2015, 13(4): 643-54 e1-9; quiz e39-40.
[9] CAUSSY C, SONI M, CUI J, et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis [J]. J Clin Invest, 2017, 127(7): 2697-704.
[10] LOOMBA R, FRIEDMAN S L, SHULMAN G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease [J]. Cell, 2021, 184(10): 2537-64.
[11] KAWANO Y, COHEN D E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease [J]. J Gastroenterol, 2013, 48(4): 434-41.
[12] KITADE H, CHEN G, NI Y, et al. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments [J]. Nutrients, 2017, 9(4).
[13] TANASE D M, GOSAV E M, COSTEA C F, et al. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD) [J]. J Diabetes Res, 2020, 2020: 3920196.
[14] SAMUEL V T, SHULMAN G I. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases [J]. Cell Metab, 2018, 27(1): 22-41.
[15] GAMBINO R, BUGIANESI E, ROSSO C, et al. Different Serum Free Fatty Acid Profiles in NAFLD Subjects and Healthy Controls after Oral Fat Load [J]. Int J Mol Sci, 2016, 17(4): 479.
[16] HONG S H, CHOI K M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences [J]. Int J Mol Sci, 2020, 21(2).
[17] HUANG J F, TSAI P C, YEH M L, et al. Risk stratification of non-alcoholic fatty liver disease across body mass index in a community basis [J]. J Formos Med Assoc, 2020, 119(1 Pt 1): 89-96.
[18] METZNER V, HERZOG G, HECKEL T, et al. Liraglutide + PYY3-36 Combination Therapy Mimics Effects of Roux-en-Y Bypass on Early NAFLD Whilst Lacking-Behind in Metabolic Improvements [J]. J Clin Med, 2022, 11(3).
[19] LI L, LIU D W, YAN H Y, et al. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies [J]. Obes Rev, 2016, 17(6): 510-9.
[20] POLYZOS S A, KOUNTOURAS J, MANTZOROS C S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics [J]. Metabolism, 2019, 92: 82-97.
[21] ZELBER-SAGI S, KESSLER A, BRAZOWSKY E, et al. A double-blind randomized placebo-controlled trial of orlistat for the treatment of nonalcoholic fatty liver disease [J]. Clin Gastroenterol Hepatol, 2006, 4(5): 639-44.
[22] UPADHYAY J, POLYZOS S A, PERAKAKIS N, et al. Pharmacotherapy of type 2 diabetes: An update [J]. Metabolism, 2018, 78: 13-42.
[23] ARMSTRONG M J, HULL D, GUO K, et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis [J]. J Hepatol, 2016, 64(2): 399-408.
[24] HANNAH W N, JR., HARRISON S A. Effect of Weight Loss, Diet, Exercise, and Bariatric Surgery on Nonalcoholic Fatty Liver Disease [J]. Clin Liver Dis, 2016, 20(2): 339-50.
[25] POLYZOS S A, KOUNTOURAS J, ANASTASIADIS S, et al. Nonalcoholic fatty liver disease: Is it time for combination treatment and a diabetes-like approach? [J]. Hepatology, 2018, 68(1): 389.
[26] FISCHER A W, CANNON B, NEDERGAARD J. Leptin: Is It Thermogenic? [J]. Endocr Rev, 2020, 41(2).
[27] WANG A N, CARLOS J, FRASER G M, et al. Zucker Diabetic Sprague Dawley rat (ZDSD): type 2 diabetes translational research model [J]. Exp Physiol, 2022.
[28] BELL-ANDERSON K S, AOUAD L, WILLIAMS H, et al. Coordinated improvement in glucose tolerance, liver steatosis and obesity-associated inflammation by cannabinoid 1 receptor antagonism in fat Aussie mice [J]. Int J Obes (Lond), 2011, 35(12): 1539-48.
[29] DE FRANCESCHI N, HAMIDI H, ALANKO J, et al. Integrin traffic - the update [J]. J Cell Sci, 2015, 128(5): 839-52.
[30] MORENO-LAYSECA P, ICHA J, HAMIDI H, et al. Integrin trafficking in cells and tissues [J]. Nat Cell Biol, 2019, 21(2): 122-32.
[31] HUMPHRIES J D, BYRON A, HUMPHRIES M J. Integrin ligands at a glance [J]. J Cell Sci, 2006, 119(Pt 19): 3901-3.
[32] ARRUDA MACEDO J K, FOX J W, DE SOUZA CASTRO M. Disintegrins from snake venoms and their applications in cancer research and therapy [J]. Curr Protein Pept Sci, 2015, 16(6): 532-48.
[33] HUSSEIN H A, WALKER L R, ABDEL-RAOUF U M, et al. Beyond RGD: virus interactions with integrins [J]. Arch Virol, 2015, 160(11): 2669-81.
[34] SUN Z, COSTELL M, FASSLER R. Integrin activation by talin, kindlin and mechanical forces [J]. Nat Cell Biol, 2019, 21(1): 25-31.
[35] LI Q, LAN T, XIE J, et al. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications [J]. Front Oncol, 2022, 12: 812480.
[36] WILKINSON A L, BARRETT J W, SLACK R J. Pharmacological characterisation of a tool alphavbeta1 integrin small molecule RGD-mimetic inhibitor [J]. Eur J Pharmacol, 2019, 842: 239-47.
[37] SCOTTON C J, CHAMBERS R C. Bleomycin revisited: towards a more representative model of IPF? [J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299(4): L439-41.
[38] HORAN G S, WOOD S, ONA V, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation [J]. Am J Respir Crit Care Med, 2008, 177(1): 56-65.
[39] WEINREB P H, SIMON K J, RAYHORN P, et al. Function-blocking integrin alphavbeta6 monoclonal antibodies: distinct ligand-mimetic and nonligand-mimetic classes [J]. J Biol Chem, 2004, 279(17): 17875-87.
[40] HENDERSON N C, ARNOLD T D, KATAMURA Y, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs [J]. Nat Med, 2013, 19(12): 1617-24.
[41] WANG B, DOLINSKI B M, KIKUCHI N, et al. Role of alphavbeta6 integrin in acute biliary fibrosis [J]. Hepatology, 2007, 46(5): 1404-12.
[42] HAHM K, LUKASHEV M E, LUO Y, et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse [J]. Am J Pathol, 2007, 170(1): 110-25.
[43] ELEZ E, KOCAKOVA I, HOHLER T, et al. Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial [J]. Ann Oncol, 2015, 26(1): 132-40.
[44] READER C S, VALLATH S, STEELE C W, et al. The integrin alphavbeta6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy [J]. J Pathol, 2019, 249(3): 332-42.
[45] MOORE K M, THOMAS G J, DUFFY S W, et al. Therapeutic targeting of integrin alphavbeta6 in breast cancer [J]. J Natl Cancer Inst, 2014, 106(8).
[46] WICK M, B RGER C, BR SSELBACH S, et al. Identification of serum-inducible genes: different patterns of gene regulation during G0-->S and G1-->S progression [J]. J Cell Sci, 1994, 107 ( Pt 1): 227-39.
[47] USSAR S, WANG H V, LINDER S, et al. The Kindlins: subcellular localization and expression during murine development [J]. Exp Cell Res, 2006, 312(16): 3142-51.
[48] LAI-CHEONG J E, PARSONS M, MCGRATH J A. The role of kindlins in cell biology and relevance to human disease [J]. Int J Biochem Cell Biol, 2010, 42(5): 595-603.
[49] ROGNONI E, WIDMAIER M, JAKOBSON M, et al. Kindlin-1 controls Wnt and TGF-beta availability to regulate cutaneous stem cell proliferation [J]. Nat Med, 2014, 20(4): 350-9.
[50] MONTANEZ E, USSAR S, SCHIFFERER M, et al. Kindlin-2 controls bidirectional signaling of integrins [J]. Genes Dev, 2008, 22(10): 1325-30.
[51] DOWLING J J, GIBBS E, RUSSELL M, et al. Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function [J]. Circ Res, 2008, 102(4): 423-31.
[52] BIALKOWSKA K, MA Y Q, BLEDZKA K, et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell [J]. J Biol Chem, 2010, 285(24): 18640-9.
[53] MOSER M, NIESWANDT B, USSAR S, et al. Kindlin-3 is essential for integrin activation and platelet aggregation [J]. Nat Med, 2008, 14(3): 325-30.
[54] KUIJPERS T W, VAN DE VIJVER E, WETERMAN M A, et al. LAD-1/variant syndrome is caused by mutations in FERMT3 [J]. Blood, 2009, 113(19): 4740-6.
[55] KARAKOSE E, SCHILLER H B, FASSLER R. The kindlins at a glance [J]. J Cell Sci, 2010, 123(Pt 14): 2353-6.
[56] MA Y Q, QIN J, WU C, et al. Kindlin-2 (Mig-2): a co-activator of beta3 integrins [J]. J Cell Biol, 2008, 181(3): 439-46.
[57] HARBURGER D S, BOUAOUINA M, CALDERWOOD D A. Kindlin-1 and -2 directly bind the C-terminal region of beta integrin cytoplasmic tails and exert integrin-specific activation effects [J]. J Biol Chem, 2009, 284(17): 11485-97.
[58] ZHU L, LIU H, LU F, et al. Structural Basis of Paxillin Recruitment by Kindlin-2 in Regulating Cell Adhesion [J]. Structure, 2019, 27(11): 1686-97 e5.
[59] LIU J, DAS M, YANG J, et al. Structural mechanism of integrin inactivation by filamin [J]. Nat Struct Mol Biol, 2015, 22(5): 383-9.
[60] GUAN S Y, CHNG C P, ONG L T, et al. The binding interface of kindlin-2 and ILK involves Asp344/Asp352/Thr356 in kindlin-2 and Arg243/Arg334 in ILK [J]. FEBS Lett, 2018, 592(1): 112-21.
[61] THEODOSIOU M, WIDMAIER M, BOTTCHER R T, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin [J]. Elife, 2016, 5: e10130.
[62] SUN Y, GUO C, MA P, et al. Kindlin-2 Association with Rho GDP-Dissociation Inhibitor alpha Suppresses Rac1 Activation and Podocyte Injury [J]. J Am Soc Nephrol, 2017, 28(12): 3545-62.
[63] BOTTCHER R T, VEELDERS M, ROMBAUT P, et al. Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading [J]. J Cell Biol, 2017, 216(11): 3785-98.
[64] YU Y, WU J, WANG Y, et al. Kindlin 2 forms a transcriptional complex with beta-catenin and TCF4 to enhance Wnt signalling [J]. EMBO Rep, 2012, 13(8): 750-8.
[65] BRAHME N N, HARBURGER D S, KEMP-O'BRIEN K, et al. Kindlin binds migfilin tandem LIM domains and regulates migfilin focal adhesion localization and recruitment dynamics [J]. J Biol Chem, 2013, 288(49): 35604-16.
[66] MEVES A, STREMMEL C, GOTTSCHALK K, et al. The Kindlin protein family: new members to the club of focal adhesion proteins [J]. Trends Cell Biol, 2009, 19(10): 504-13.
[67] SILVA JUNIOR G B, BENTES A C, DAHER E F, et al. Obesity and kidney disease [J]. J Bras Nefrol, 2017, 39(1): 65-9.
[68] CHYLIKOVA J, DVORACKOVA J, TAUBER Z, et al. M1/M2 macrophage polarization in human obese adipose tissue [J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2018, 162(2): 79-82.
[69] QI L, CHI X, ZHANG X, et al. Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy [J]. Cell Death Dis, 2019, 10(12): 890.
[70] HE X, SONG J, CAI Z, et al. Kindlin-2 deficiency induces fatal intestinal obstruction in mice [J]. Theranostics, 2020, 10(14): 6182-200.
[71] ZHU K, LAI Y, CAO H, et al. Kindlin-2 modulates MafA and beta-catenin expression to regulate beta-cell function and mass in mice [J]. Nat Commun, 2020, 11(1): 484.
[72] WU C, JIAO H, LAI Y, et al. Kindlin-2 controls TGF-beta signalling and Sox9 expression to regulate chondrogenesis [J]. Nat Commun, 2015, 6: 7531.
[73] CAO H, YAN Q, WANG D, et al. Focal adhesion protein Kindlin-2 regulates bone homeostasis in mice [J]. Bone Res, 2020, 8: 2.
[74] CHEN S, WU X, LAI Y, et al. Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc [J]. Bone Res, 2022, 10(1): 5.
[75] CHI X, LUO W, SONG J, et al. Kindlin-2 in Sertoli cells is essential for testis development and male fertility in mice [J]. Cell Death Dis, 2021, 12(6): 604.
[76] WANG H, WANG C, LONG Q, et al. Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway [J]. Development, 2021, 148(10).
[77] LARJAVA H, PLOW E F, WU C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion [J]. EMBO Rep, 2008, 9(12): 1203-8.
[78] !!! INVALID CITATION !!!
[79].
[79] AVILA-FLORES A, ARRANZ-NICOLAS J, MERIDA I. Transcriptional Activity of FOXO Transcription Factors Measured by Luciferase Assays [J]. Methods Mol Biol, 2019, 1890: 91-102.
[80] ISKANDAR K, CAO Y, HAYASHI Y, et al. PDK-1/FoxO1 pathway in POMC neurons regulates Pomc expression and food intake [J]. Am J Physiol Endocrinol Metab, 2010, 298(4): E787-98.
[81] HOMAN E P, BRANDAO B B, SOFTIC S, et al. Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue [J]. J Clin Invest, 2021, 131(19).
[82] KANDULA V, KOSURU R, LI H, et al. Forkhead box transcription factor 1: role in the pathogenesis of diabetic cardiomyopathy [J]. Cardiovasc Diabetol, 2016, 15: 44.
[83] GUO L, CAI T, CHEN K, et al. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ [J]. J Cell Biol, 2018, 217(4): 1431-51.
[84] DU S, ZHENG H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases [J]. Cell Biosci, 2021, 11(1): 188.
[85] KITA M, NAKAE J, KAWANO Y, et al. Zfp238 Regulates the Thermogenic Program in Cooperation with Foxo1 [J]. iScience, 2019, 12: 87-101.
[86] DING H R, TANG Z T, TANG N, et al. Protective Properties of FOXO1 Inhibition in a Murine Model of Non-alcoholic Fatty Liver Disease Are Associated With Attenuation of ER Stress and Necroptosis [J]. Front Physiol, 2020, 11: 177.
[87] VALENTI L, RAMETTA R, DONGIOVANNI P, et al. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis [J]. Diabetes, 2008, 57(5): 1355-62.
[88] MATSUMOTO M, HAN S, KITAMURA T, et al. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism [J]. J Clin Invest, 2006, 116(9): 2464-72.
[89] LI J, CHI Y, WANG C, et al. Pancreatic-derived factor promotes lipogenesis in the mouse liver: role of the Forkhead box 1 signaling pathway [J]. Hepatology, 2011, 53(6): 1906-16.
[90] MATSUMOTO M, POCAI A, ROSSETTI L, et al. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver [J]. Cell Metab, 2007, 6(3): 208-16.
[91] ZHANG L, ZHANG Z, LI C, et al. S100A11 Promotes Liver Steatosis via FOXO1-Mediated Autophagy and Lipogenesis [J]. Cell Mol Gastroenterol Hepatol, 2021, 11(3): 697-724.

所在学位评定分委会
医学院
国内图书分类号
Q591
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343021
专题南方科技大学医学院
推荐引用方式
GB/T 7714
钟一鸣. Kindlin-2 在非酒精性脂肪肝发生进程中的作用探究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930165-钟一鸣-南方科技大学医(5276KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[钟一鸣]的文章
百度学术
百度学术中相似的文章
[钟一鸣]的文章
必应学术
必应学术中相似的文章
[钟一鸣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。