题名 | CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT |
作者 | |
通讯作者 | Zhang, Xiaoqing; Higashita, Risa; Liu, Jiang |
发表日期 | 2022-08-17
|
DOI | |
发表期刊 | |
ISSN | 0950-7051
|
EISSN | 1872-7409
|
卷号 | 250 |
摘要 | Nuclear cataract (NC) is the leading cause of vision impairment and blindness globally. NC patients can slow the opacity development with early intervention or recover vision with cataract surgery. Anterior segment optical coherence tomography (AS-OCT) images have been increasingly used for clinical NC diagnosis. Compared with other ophthalmic images, e.g., slit lamp images, AS-OCT images are vital for NC diagnosis due to their capability of clearly capturing the nucleus region. Moreover, clinical research has shown the high correlation and repeatability between NC severity levels and image features like mean, maximum, and standard deviation on AS-OCT images. This paper aims to incorporate the clinical features into convolutional neural networks (CNNs) to improve NC classification results and enhance the interpretation of the decision process. Thus, we propose a novel clinical awareness attention network (CCA-Net) to classify NC severity levels automatically. In CCA-Net, we design a practical yet effective clinical-aware attention block, which not only uses the mixed pooling operator to extract clinical features from each channel but also applies the designed clinical integration operator to focus on salient channels. We conduct extensive experiments on one clinical AS-OCT image dataset and two publicly available ophthalmology datasets. The results demonstrate that the CCA-Net outperforms state-of-the-art attention-based CNNs and strong baselines. Moreover, we also provide in-depth analysis to explain the internal behaviors of our method, enhancing the interpretation ability of our method. (C) 2022 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Guangdong Provincial Department of Education[2020ZDZX3043]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Shenzhen Natural Science Fund[JCYJ20200109140820699]
; Stable Support Plan Program[20200925174052004]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000811334800011
|
出版者 | |
EI入藏号 | 20222512240742
|
EI主题词 | Clinical research
; Convolutional neural networks
; Image classification
; Image segmentation
; Optical tomography
; Patient treatment
|
EI分类号 | Medicine and Pharmacology:461.6
; Data Processing and Image Processing:723.2
; Optical Devices and Systems:741.3
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/343048 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China 3.Tomey Corp, Nagoya, 4510051, Japan 4.Sun Yat Sen Univ, State Key Lab Ophthalmol, Guangzhou 510060, Peoples R China 5.Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Chinese Acad Sci, Ningbo 315201, Peoples R China 6.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain inspired Intelligent, Shenzhen 518055, Peoples R China |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang, Xiaoqing,Xiao, Zunjie,Hu, Lingxi,et al. CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT[J]. KNOWLEDGE-BASED SYSTEMS,2022,250.
|
APA |
Zhang, Xiaoqing.,Xiao, Zunjie.,Hu, Lingxi.,Xu, Gelei.,Higashita, Risa.,...&Liu, Jiang.(2022).CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT.KNOWLEDGE-BASED SYSTEMS,250.
|
MLA |
Zhang, Xiaoqing,et al."CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT".KNOWLEDGE-BASED SYSTEMS 250(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论