中文版 | English
题名

CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT

作者
通讯作者Zhang, Xiaoqing; Higashita, Risa; Liu, Jiang
发表日期
2022-08-17
DOI
发表期刊
ISSN
0950-7051
EISSN
1872-7409
卷号250
摘要
Nuclear cataract (NC) is the leading cause of vision impairment and blindness globally. NC patients can slow the opacity development with early intervention or recover vision with cataract surgery. Anterior segment optical coherence tomography (AS-OCT) images have been increasingly used for clinical NC diagnosis. Compared with other ophthalmic images, e.g., slit lamp images, AS-OCT images are vital for NC diagnosis due to their capability of clearly capturing the nucleus region. Moreover, clinical research has shown the high correlation and repeatability between NC severity levels and image features like mean, maximum, and standard deviation on AS-OCT images. This paper aims to incorporate the clinical features into convolutional neural networks (CNNs) to improve NC classification results and enhance the interpretation of the decision process. Thus, we propose a novel clinical awareness attention network (CCA-Net) to classify NC severity levels automatically. In CCA-Net, we design a practical yet effective clinical-aware attention block, which not only uses the mixed pooling operator to extract clinical features from each channel but also applies the designed clinical integration operator to focus on salient channels. We conduct extensive experiments on one clinical AS-OCT image dataset and two publicly available ophthalmology datasets. The results demonstrate that the CCA-Net outperforms state-of-the-art attention-based CNNs and strong baselines. Moreover, we also provide in-depth analysis to explain the internal behaviors of our method, enhancing the interpretation ability of our method. (C) 2022 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Provincial Department of Education[2020ZDZX3043] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Shenzhen Natural Science Fund[JCYJ20200109140820699] ; Stable Support Plan Program[20200925174052004]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000811334800011
出版者
EI入藏号
20222512240742
EI主题词
Clinical research ; Convolutional neural networks ; Image classification ; Image segmentation ; Optical tomography ; Patient treatment
EI分类号
Medicine and Pharmacology:461.6 ; Data Processing and Image Processing:723.2 ; Optical Devices and Systems:741.3
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343048
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
3.Tomey Corp, Nagoya, 4510051, Japan
4.Sun Yat Sen Univ, State Key Lab Ophthalmol, Guangzhou 510060, Peoples R China
5.Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Chinese Acad Sci, Ningbo 315201, Peoples R China
6.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain inspired Intelligent, Shenzhen 518055, Peoples R China
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang, Xiaoqing,Xiao, Zunjie,Hu, Lingxi,et al. CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT[J]. KNOWLEDGE-BASED SYSTEMS,2022,250.
APA
Zhang, Xiaoqing.,Xiao, Zunjie.,Hu, Lingxi.,Xu, Gelei.,Higashita, Risa.,...&Liu, Jiang.(2022).CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT.KNOWLEDGE-BASED SYSTEMS,250.
MLA
Zhang, Xiaoqing,et al."CCA-Net: Clinical-awareness attention network for nuclear cataract classification in AS-OCT".KNOWLEDGE-BASED SYSTEMS 250(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Hu, Lingxi]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Hu, Lingxi]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Hu, Lingxi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。