中文版 | English
题名

Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)

作者
通讯作者Zhang, Dongxiao
发表日期
2022-06-01
DOI
发表期刊
EISSN
2643-1564
卷号4期号:2
摘要
Partial differential equations (PDEs) are concise and understandable representations of domain knowledge, which are essential for deepening our understanding of physical processes and predicting future responses. However, the PDEs of many real-world problems are uncertain, which calls for PDE discovery. We propose the symbolic genetic algorithm to discover open-form PDEs (SGA-PDE) directly from data without prior knowledge about the equation structure. SGA-PDE focuses on the representation and optimization of PDEs. Firstly, SGA-PDE uses symbolic mathematics to realize the flexible representation of any given PDE, transforms a PDE into a forest, and converts each function term into a binary tree. Secondly, SGA-PDE adopts a specially designed genetic algorithm to efficiently optimize the binary trees by iteratively updating the tree topology and node attributes. The SGA-PDE is gradient free, which is a desirable characteristic in PDE discovery since it is difficult to obtain the gradient between the PDE loss and the PDE structure. In the experiment, SGA-PDE not only successfully discovered the nonlinear Burgers' equation, the Korteweg-de Vries equation, and the Chafee-Infante equation but also handled PDEs with fractional structure and compound functions that cannot be solved by conventional PDE discovery methods.
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[62106116] ; Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738]
WOS研究方向
Physics
WOS类目
Physics, Multidisciplinary
WOS记录号
WOS:000811625800004
出版者
EI入藏号
20222512246006
EI主题词
Binary trees ; Functions ; Iterative methods ; Korteweg-de Vries equation ; Nonlinear equations
EI分类号
Mathematics:921 ; Calculus:921.2 ; Numerical Methods:921.6
来源库
Web of Science
引用统计
被引频次[WOS]:34
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343054
专题南方科技大学
作者单位
1.Yongriver Inst Technol, Eastern Inst Adv Study, Ningbo 315201, Zhejiang, Peoples R China
2.Univ Washington, Dept Comp Sci, Seattle, WA 98195 USA
3.RealAI, Beijing 100085, Peoples R China
4.Peking Univ, Beijing Innovat Ctr Engn Sci & Adv Technol BIC ES, Energy & Resources Engn ERE, Coll Engn, Beijing 100871, Peoples R China
5.Peking Univ, State Key Lab Turbulence & Complex Syst SKLTCS, Coll Engn, Beijing 100871, Peoples R China
6.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Guangdong, Peoples R China
7.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Guangdong, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen, Yuntian,Luo, Yingtao,Liu, Qiang,et al. Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)[J]. PHYSICAL REVIEW RESEARCH,2022,4(2).
APA
Chen, Yuntian,Luo, Yingtao,Liu, Qiang,Xu, Hao,&Zhang, Dongxiao.(2022).Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE).PHYSICAL REVIEW RESEARCH,4(2).
MLA
Chen, Yuntian,et al."Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)".PHYSICAL REVIEW RESEARCH 4.2(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Yuntian]的文章
[Luo, Yingtao]的文章
[Liu, Qiang]的文章
百度学术
百度学术中相似的文章
[Chen, Yuntian]的文章
[Luo, Yingtao]的文章
[Liu, Qiang]的文章
必应学术
必应学术中相似的文章
[Chen, Yuntian]的文章
[Luo, Yingtao]的文章
[Liu, Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。