题名 | Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE) |
作者 | |
通讯作者 | Zhang, Dongxiao |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
EISSN | 2643-1564
|
卷号 | 4期号:2 |
摘要 | Partial differential equations (PDEs) are concise and understandable representations of domain knowledge, which are essential for deepening our understanding of physical processes and predicting future responses. However, the PDEs of many real-world problems are uncertain, which calls for PDE discovery. We propose the symbolic genetic algorithm to discover open-form PDEs (SGA-PDE) directly from data without prior knowledge about the equation structure. SGA-PDE focuses on the representation and optimization of PDEs. Firstly, SGA-PDE uses symbolic mathematics to realize the flexible representation of any given PDE, transforms a PDE into a forest, and converts each function term into a binary tree. Secondly, SGA-PDE adopts a specially designed genetic algorithm to efficiently optimize the binary trees by iteratively updating the tree topology and node attributes. The SGA-PDE is gradient free, which is a desirable characteristic in PDE discovery since it is difficult to obtain the gradient between the PDE loss and the PDE structure. In the experiment, SGA-PDE not only successfully discovered the nonlinear Burgers' equation, the Korteweg-de Vries equation, and the Chafee-Infante equation but also handled PDEs with fractional structure and compound functions that cannot be solved by conventional PDE discovery methods. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[62106116]
; Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:000811625800004
|
出版者 | |
EI入藏号 | 20222512246006
|
EI主题词 | Binary trees
; Functions
; Iterative methods
; Korteweg-de Vries equation
; Nonlinear equations
|
EI分类号 | Mathematics:921
; Calculus:921.2
; Numerical Methods:921.6
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:34
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/343054 |
专题 | 南方科技大学 |
作者单位 | 1.Yongriver Inst Technol, Eastern Inst Adv Study, Ningbo 315201, Zhejiang, Peoples R China 2.Univ Washington, Dept Comp Sci, Seattle, WA 98195 USA 3.RealAI, Beijing 100085, Peoples R China 4.Peking Univ, Beijing Innovat Ctr Engn Sci & Adv Technol BIC ES, Energy & Resources Engn ERE, Coll Engn, Beijing 100871, Peoples R China 5.Peking Univ, State Key Lab Turbulence & Complex Syst SKLTCS, Coll Engn, Beijing 100871, Peoples R China 6.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Guangdong, Peoples R China 7.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Guangdong, Peoples R China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen, Yuntian,Luo, Yingtao,Liu, Qiang,et al. Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)[J]. PHYSICAL REVIEW RESEARCH,2022,4(2).
|
APA |
Chen, Yuntian,Luo, Yingtao,Liu, Qiang,Xu, Hao,&Zhang, Dongxiao.(2022).Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE).PHYSICAL REVIEW RESEARCH,4(2).
|
MLA |
Chen, Yuntian,et al."Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)".PHYSICAL REVIEW RESEARCH 4.2(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论