中文版 | English
题名

A Supervised-Reinforced Successive Training Framework for a Fuzzy Inference System and Its Application in Robotic Odor Source Searching

作者
通讯作者Fu, Chenglong
发表日期
2022-05-31
DOI
发表期刊
ISSN
1662-5218
卷号16
摘要

Fuzzy inference systems have been widely applied in robotic control. Previous studies proposed various methods to tune the fuzzy rules and the parameters of the membership functions (MFs). Training the systems with only supervised learning requires a large amount of input-output data, and the performance of the trained system is confined by that of the target system. Training the systems with only reinforcement learning (RL) does not require prior knowledge but is time-consuming, and the initialization of the system remains a problem. In this paper, a supervised-reinforced successive training framework is proposed for a multi-continuous-output fuzzy inference system (MCOFIS). The parameters of the fuzzy inference system are first tuned by a limited number of input-output data from an existing controller with supervised training and then are utilized to initialize the system in the reinforcement training stage. The proposed framework is applied in a robotic odor source searching task and the evaluation results demonstrate that the performance of the fuzzy inference system trained by the successive framework is superior to the systems trained by only supervised learning or RL. The system trained by the proposed framework can achieve around a 10% higher success rate compared to the systems trained by only supervised learning or RL.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key R&D Program of China[2018YFC2001601] ; National Natural Science Foundation of China[
WOS研究方向
Computer Science ; Robotics ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Robotics ; Neurosciences
WOS记录号
WOS:000810949500001
出版者
EI入藏号
20222612262742
EI主题词
Electronic Nose ; Fuzzy Inference ; Fuzzy Neural Networks ; Fuzzy Systems ; Membership Functions ; Robotics ; Supervised Learning
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Robotics:731.5 ; Chemistry:801 ; Mathematics:921 ; Electric And Electronic Instruments:942.1 ; Systems Science:961
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343058
专题南方科技大学
作者单位
1.Shenzhen Key Lab Biomimet Robot & Intelligent Syst, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil, Shenzhen, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen, Xinxing,Leng, Yuquan,Fu, Chenglong. A Supervised-Reinforced Successive Training Framework for a Fuzzy Inference System and Its Application in Robotic Odor Source Searching[J]. Frontiers in Neurorobotics,2022,16.
APA
Chen, Xinxing,Leng, Yuquan,&Fu, Chenglong.(2022).A Supervised-Reinforced Successive Training Framework for a Fuzzy Inference System and Its Application in Robotic Odor Source Searching.Frontiers in Neurorobotics,16.
MLA
Chen, Xinxing,et al."A Supervised-Reinforced Successive Training Framework for a Fuzzy Inference System and Its Application in Robotic Odor Source Searching".Frontiers in Neurorobotics 16(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Xinxing]的文章
[Leng, Yuquan]的文章
[Fu, Chenglong]的文章
百度学术
百度学术中相似的文章
[Chen, Xinxing]的文章
[Leng, Yuquan]的文章
[Fu, Chenglong]的文章
必应学术
必应学术中相似的文章
[Chen, Xinxing]的文章
[Leng, Yuquan]的文章
[Fu, Chenglong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。