[1] KIM D-H, GHAFFARI R, LU N, et al. Flexible and stretchable electronics for biointegrated devices [J]. Annual review of biomedical engineering, 2012, 14: 113-28.
[2] LEE J, LLERENA ZAMBRANO B, WOO J, et al. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications [J]. Advanced Materials, 2020, 32(5): 1902532.
[3] ARNS R G. The other transistor: early history of the metal-oxide semiconductor field-effect transistor [J]. Engineering Science & Education Journal, 1998, 7(5): 233-40.
[4] YU L, PARKER S, XUAN H, et al. Flexible Multi‐Material Fibers for Distributed Pressure and Temperature Sensing [J]. Advanced Functional Materials, 2020: 1908915.
[5] LI T, LI Y, ZHANG T. Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors [J]. Accounts of Chemical Research, 2019.
[6] HUANG Y, FAN X, CHEN S C, et al. Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing [J]. Advanced Functional Materials, 2019, 29(12): 1808509.1-.24.
[7] KIM J, CAMPBELL A S, DE ÁVILA B E-F, et al. Wearable biosensors for healthcare monitoring [J]. Nature Biotechnology, 2019, 37(4): 389-406.
[8] WANG X, DONG L, ZHANG H, et al. Recent Progress in Electronic Skin [J]. Advanced Science, 2015, 2(10): 1500169.
[9] CAO M S, WANG X X, ZHANG M, et al. Variable‐temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy [J]. Advanced Materials, 2020, 32(10): 1907156.
[10] KIM D C, SHIM H J, LEE W, et al. Material-Based Approaches for the Fabrication of Stretchable Electronics [J]. Advanced Materials, 2020, 32(15): 1902743.
[11] KEUM K, KIM J W, HONG S Y, et al. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics [J]. Advanced Materials, 2020, 32(51): 2002180.
[12] TEYMOURIAN H, BARFIDOKHT A, WANG J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020) [J]. Chemical Society Reviews, 2020, 49(21): 7671-709.
[13] ROZHENTSOV A A, BAEV A A, HALIMOV M, et al. Optoelectronic Navigation System for a Flexible Surgical Instrument Based on Inertial Microelectromechanical Sensors [J]. Bulletin of the Russian Academy of Sciences: Physics, 2021, 85(12): 1434-8.
[14] ZHOU C C, WANG H W, ZHANG Y M, et al. Study of a Ring-Type Surgical Pleth Index Monitoring System Based on Flexible PPG Sensor [J]. IEEE Sensors Journal, 2020, PP(99): 1-.
[15] JIN Y, CHEN G, LAO K, et al. Identifying human body states by using a flexible integrated sensor [J]. npj Flexible Electronics, 2020, 4(1): 28.
[16] LI W-D, KE K, JIA J, et al. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing [J]. Small, 2022, 18(7): 2103734.
[17] MENG K, CHEN J, LI X, et al. Flexible Weaving Constructed Self-Powered Pressure Sensor Enabling Continuous Diagnosis of Cardiovascular Disease and Measurement of Cuffless Blood Pressure [J]. Advanced Functional Materials, 2019, 29(5): 1806388.
[18] A dual-trigger-mode ionic hydrogel sensor for contact or contactless motion recognition [J]. Materials Horizons, 2020, 7.
[19] MIAO H S, YI J G, WEI C L, et al. Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method [J]. Nano Energy, 2020, 76: 105029.
[20] DENG W, YANG T, JIN L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures - ScienceDirect [J]. Nano Energy, 2019, 55: 516-25.
[21] Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing [J]. Advanced Materials, 2020, 32(35).
[22] QIU Y, WANG C, LU X, et al. A Biomimetic Drosera Capensis with Adaptive Decision-Predation Behavior Based on Multifunctional Sensing and Fast Actuating Capability [J]. Advanced Functional Materials.
[23] YAN W, DONG C, XIANG Y, et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics [J]. Materials Today, 2020, 35.
[24] MOHAMMED M G, KRAMER R. All‐printed flexible and stretchable electronics [J]. Advanced Materials, 2017, 29(19): 1604965.
[25] ZHOU L Y, FU J Z, GAO Q, et al. All‐printed flexible and stretchable electronics with pressing or freezing activatable liquid‐metal–silicone inks [J]. Advanced Functional Materials, 2020, 30(3): 1906683.
[26] ZHANG Y-Z, WANG Y, CHENG T, et al. Printed supercapacitors: materials, printing and applications [J]. Chemical Society Reviews, 2019, 48(12): 3229-64.
[27] WANG B, THUKRAL A, XIE Z, et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics [J]. Nature Communications, 2020, 11(1): 2405.
[28] ZHONG W, LIU C, LIU Q, et al. Ultrasensitive wearable pressure sensors assembled by surface-patterned polyolefin elastomer nanofiber membrane interpenetrated with silver nanowires [J]. ACS applied materials & interfaces, 2018, 10(49): 42706-14.
[29] CHO S, KANG S, PANDYA A, et al. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens [J]. ACS nano, 2017, 11(4): 4346-57.
[30] YU X, CHENG H, ZHANG M, et al. Graphene-based smart materials [J]. Nature Reviews Materials, 2017, 2(9): 1-13.
[31] ASLAM S, BOKHARI T H, ANWAR T, et al. Graphene oxide coated graphene foam based chemical sensor [J]. Materials Letters, 2019, 235: 66-70.
[32] LIU M, LI Z, ZHAO X, et al. Fundamental Insights into Graphene Strain Sensing [J]. Nano Letters, 2020, 21(1): 833-9.
[33] COMINI E. Metal oxide nanowire chemical sensors: innovation and quality of life [J]. Materials Today, 2016, 19(10): 559-67.
[34] IM H, HONG S, LEE Y, et al. Colorimetric Sensing Systems: A Colorimetric Multifunctional Sensing Method for Structural‐Durability‐Health Monitoring Systems (Adv. Mater. 23/2019) [J]. Advanced Materials, 2019, 31(23): 1970163.
[35] QIN J, YIN L J, HAO Y N, et al. Flexible and stretchable capacitive sensors with different microstructures [J]. Advanced Materials, 2021, 33(34): 2008267.
[36] GAO Y, OTA H, SCHALER E W, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring [J]. Advanced Materials, 2017, 29(39): 1701985.
[37] LI T, QU M, CARLOS C, et al. High‐performance poly (vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors [J]. Advanced Materials, 2021, 33(3): 2006093.
[38] XU S, ZHANG Y, JIA L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin [J]. Science, 2014, 344(6179): 70-4.
[39] QI D, ZHANG K, TIAN G, et al. Stretchable electronics based on PDMS substrates [J]. Advanced Materials, 2021, 33(6): 2003155.
[40] PAN T, PHARR M, MA Y, et al. Experimental and theoretical studies of serpentine interconnects on ultrathin elastomers for stretchable electronics [J]. Advanced Functional Materials, 2017, 27(37): 1702589.
[41] 王勖成. 有限单元法基本原理和数值方法 [M]. 有限单元法基本原理和数值方法, 1997.
[42] WONG C, GEHRCHEN P M, DARVANN T, et al. Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine [J]. Medical Imaging IEEE Transactions on, 2003, 22(6): 742-6.
[43] PERIC D, OWEN D R J. Finite-element applications to the nonlinear mechanics of solids [J]. Reports on Progress in Physics, 1998, 61(11): 1495.
[44] 曾攀. 有限元基础教程 [M]. 有限元基础教程, 2009.
[45] 马驰 张. 有限元分析在相变材料中的应用研究综述 [J]. 新技术新工艺, 2020, (11): 5.
[46] MAO X, TIAN W, WU J, et al. Electrochemically responsive heterogeneous catalysis for controlling reaction kinetics [J]. Journal of the American Chemical Society, 2015, 137(3): 1348-55.
[47] YANG Z, WEI J, GIŻYNSKI K, et al. Interference-like patterns of static magnetic fields imprinted into polymer/nanoparticle composites [J]. Nature communications, 2017, 8(1): 1-8.
[48] YETISEN, ALI K, MARTINEZ-HURTADO, et al. Wearables in Medicine [J].
[49] KHAN Y, OSTFELD A E, LOCHNER C M, et al. Monitoring of Vital Signs with Flexible and Wearable Medical Devices [J]. Advanced Materials, 2016, 28(22).
[50] GAO M, WANG P, JIANG L, et al. Power generation for wearable systems [J]. Energy & Environmental Science, 2021.
[51] KIM S, AMJADI M, LEE T-I, et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices [J]. ACS applied materials & interfaces, 2019, 11(26): 23639-48.
[52] LEE J H, HEO J S, KIM Y-J, et al. A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception [J]. Advanced Materials, 2020, 32(22): 2000969.
[53] ZHU B, NIU Z, WANG H, et al. Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors [J]. Small, 2014, 10(18): 3625-31.
[54] PYO S, LEE J-I, KIM M-O, et al. Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite [J]. Journal of Micromechanics and Microengineering, 2014, 24(7): 075012.
[55] ZHANG C, LI H, HUANG A, et al. Rational Design of a Flexible CNTs@PDMS Film Patterned by Bio‐Inspired Templates as a Strain Sensor and Supercapacitor [J]. Small, 2019.
[56] HE W, SOHN M, MA R, et al. Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors [J]. Nano Energy, 2020, 78(2020): 105383.
[57] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection [J]. Nature nanotechnology, 2011, 6(5): 296-301.
[58] YANG J C, KIM J-O, OH J, et al. Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature [J]. ACS applied materials & interfaces, 2019, 11(21): 19472-80.
[59] PARK S, KIM H, VOSGUERITCHIAN M, et al. Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes [J]. Advanced Materials, 2014, 26(43): 7324-32.
[60] WANG Z L, WANG A C. On the origin of contact-electrification [J]. Materials Today, 2019, 30: 34-51.
[61] ALAM M M, LEE S, KIM M, et al. Ultra-flexible nanofiber-based multifunctional motion sensor [J]. Nano Energy, 2020, 72: 104672.
[62] PARK S, KIM H, VOSGUERITCHIAN M, et al. Stretchable Energy-Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes [J]. Advanced Materials, 2014, 26(43): 7324-32.
[63] LUO J, WANG Z, XU L, et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics [J]. Nature Communications, 2019, 10(1): 5147.
[64] CAI Y-W, ZHANG X-N, WANG G-G, et al. A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin [J]. Nano Energy, 2021, 81: 105663.
[65] ZHANG Y, WU M, ZHU Q, et al. Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self-Powered Mechanosensational System [J]. Advanced Functional Materials, 2019, 29(42): 1904259.
[66] PARK J, KIM M, LEE Y, et al. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli [J]. Sci Adv, 2015, 1(9): e1500661.
[67] SCHMIDT G C, PANICKER P M, QIU X, et al. Paper-Embedded Roll-to-Roll Mass Printed Piezoelectric Transducers [J]. Advanced Materials, 2021, 33(8): 2006437.
[68] PARK D Y, JOE D J, KIM D H, et al. Self-Powered Real-Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors [J]. Advanced Materials, 2017, 29(37): 1702308.
[69] WANG Y, ZHU L, DU C. Flexible Difunctional (Pressure and Light) Sensors Based on ZnO Nanowires/Graphene Heterostructures [J]. Advanced Materials Interfaces, 2020, 7(6): 1901932.
[70] HAN B, ZHANG Y L, ZHU L, et al. Plasmonic-Assisted Graphene Oxide Artificial Muscles [J]. Adv Mater, 2019, 31(5): e1806386.
[71] KIM J T, CHOI H, SHIN E, et al. Graphene-based optical waveguide tactile sensor for dynamic response [J]. Scientific Reports, 2018, 8(1): 16118.
[72] ZONG L, LI X, ZHU L, et al. Photo-responsive heterojunction nanosheets of reduced graphene oxide for photo-detective flexible energy devices [J]. Journal of Materials Chemistry A, 2019.
[73] HARADA S, KANAO K, YAMAMOTO Y, et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin [J]. ACS nano, 2014, 8(12): 12851-7.
[74] REN X, PEI K, PENG B, et al. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array [J]. Advanced Materials, 2016, 28(24): 4832-8.
[75] HONDA W, HARADA S, ISHIDA S, et al. High‐performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor [J]. Advanced Materials, 2015, 27(32): 4674-80.
[76] NAKATA S, SHIOMI M, FUJITA Y, et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device [J]. Nature Electronics, 2018, 1(11): 596-603.
[77] WENCEL D, KAWOREK A, ABEL T, et al. Optical Sensor for Real‐Time pH Monitoring in Human Tissue [J]. Small, 2018, 14(51): 1803627.
[78] BANDODKAR A J, HUNG V W, JIA W, et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J]. Analyst, 2013, 138(1): 123-8.
[79] MICHALSKA A, MAKSYMIUK K. All-plastic, disposable, low detection limit ion-selective electrodes [J]. Analytica Chimica Acta, 2004, 523(1): 97-105.
[80] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J]. Nature, 2016, 529(7587): 509-14.
[81] EMAMINEJAD S, GAO W, WU E, et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform [J]. Proceedings of the National Academy of Sciences, 2017, 114(18): 4625-30.
[82] XU K, FUJITA Y, LU Y, et al. A Wearable Body Condition Sensor System with Wireless Feedback Alarm Functions [J]. Advanced Materials, 2021, 33(18): 2008701.
[83] AN J H, PARK S J, KWON O S, et al. High-Performance Flexible Graphene Aptasensor for Mercury Detection in Mussels [J]. ACS Nano, 2013, 7(12): 10563-71.
[84] ZHANG F, DI C-A, BERDUNOV N, et al. Ultrathin Film Organic Transistors: Precise Control of Semiconductor Thickness via Spin-Coating [J]. Advanced Materials, 2013, 25(10): 1401-7.
[85] ZHANG D, ZHANG Y, LU W, et al. Fluorescent Hydrogel‐Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury (II) Detection [J]. Advanced Materials Technologies, 2019, 4(1): 1800201.
[86] CHEN G, TANG L, MACE B, et al. Multi-physics coupling in thermoacoustic devices: A review [J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111170.
[87] AMINI H, SOLLIER E, MASAELI M, et al. Engineering fluid flow using sequenced microstructures [J]. Nature Communications, 2013, 4(1): 1826.
[88] DIAO Y, ZHOU Y, KUROSAWA T, et al. Flow-enhanced solution printing of all-polymer solar cells [J]. Nature Communications, 2015, 6(1): 7955.
[89] MAO X, TIAN W, JIE W, et al. Electrochemically Responsive Heterogeneous Catalysis for Controlling Reaction Kinetics [J]. 2014.
[90] YANG Y, SONG Y, BO X, et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat [J]. Nature Biotechnology, 2020, 38(2): 217-24.
[91] LI Q, CHEN L, GADINSKI M R, et al. Flexible high-temperature dielectric materials from polymer nanocomposites [J]. Nature, 2015, 523(7562): 576-9.
[92] LEE B, CHO H, PARK K T, et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics [J]. Nature Communications, 2020, 11(1).
[93] ZHENG C, HSU P C, LOPEZ J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries [J]. Nature Energy, 2016, 1(1): 15009.
[94] ANGUITA J V, SMITH C T G, STUTE T, et al. Dimensionally and environmentally ultra-stable polymer composites reinforced with carbon fibres [J]. Nature Materials, 2020, 19(3): 317-22.
[95] JU-HYUCK, LEE, HONG-JOON, et al. Micropatterned P(VDF-TrFE) Film-Based Piezoelectric Nanogenerators for Highly Sensitive Self-Powered Pressure Sensors [J]. Advanced Functional Materials, 2015.
[96] BOUTRY C M, NEGRE M, JORDA M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics [J]. Science Robotics, 2018, 3(24): eaau6914-.
[97] Electric‐Field‐Induced Gradient Ionogels for Highly Sensitive, Broad‐Range‐Response, and Freeze/Heat‐Resistant Ionic Fingers [J]. Advanced Materials.
[98] LU L, YANG B, ZHAI Y, et al. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor [J]. Nano Energy, 2020, 76: 104966.
[99] YANG Y, ZHANG H, ZHONG X, et al. Electret Film-Enhanced Triboelectric Nanogenerator Matrix for Self-Powered Instantaneous Tactile Imaging [J]. ACS Applied Materials & Interfaces, 2014, 6(5).
[100] 金亮, 汪冬梅. 基于MATLAB与COMSOL联合仿真的永磁同步发电机优化设计 [J]. 中国科技论文, 2017, 12(17): 6.
[101] WIRIYATHAMMABHUM P, SUMMERS-STAY D, FERMüLLER C, et al. Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics [J]. ACM Comput Surv, 2016, 49(4): Article 71.
[102] 王刚, 安琳. COMSOL Multiphysics工程实践与理论仿真:多物理场数值分析技术 [M]. COMSOL Multiphysics工程实践与理论仿真:多物理场数值分析技术, 2012.
[103] ZIMMERMAN W B J. COMSOL Multiphysics有限元法多物理场建模与分析 [M]. COMSOL Multiphysics有限元法多物理场建模与分析, 2007.
[104] WEBB J P. Application of the finite-element method to electromagnetic and electrical topics [J]. Reports on Progress in Physics, 1995, 58(12): 1673-712.
[105] 王秉中. 计算电磁学 [M]. 计算电磁学, 2002.
[106] 张三慧. 大学物理学(第三版)A版 电磁学 [M]. 大学物理学(第三版)A版 电磁学, 2008.
[107] YAO S, VARGAS L, HU X, et al. A novel finger kinematic tracking method based on skin-like wearable strain sensors [J]. IEEE Sensors Journal, 2018, 18(7): 3010-5.
[108] DAHIYA R, YOGESWARAN N, LIU F, et al. Large-area soft e-skin: The challenges beyond sensor designs [J]. Proceedings of the IEEE, 2019, 107(10): 2016-33.
[109] OH J Y, BAO Z. Second skin enabled by advanced electronics [J]. Advanced Science, 2019, 6(11): 1900186.
[110] LEI Z, WU P. Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems [J]. Materials Horizons, 2019, 6(3): 538-45.
[111] WANG Y, JIE W, YANG C, et al. Colossal permittivity materials as superior dielectrics for diverse applications [J]. Advanced Functional Materials, 2019, 29(27): 1808118.
[112] 金维芳. 电介质物理学 第2版 [M]. 电介质物理学 第2版, 2003.
[113] 任凤章. 材料物理基础 [M]. 材料物理基础, 2012.
[114] 徐建华, 杨文耀. 储能聚合物电介质基础 [M]. 储能聚合物电介质基础, 2014.
[115] 李翰如. 电介质物理导论 [M]. 电介质物理导论, 1990.
[116] 李晓莹. 传感器与测试技术 [M]. 传感器与测试技术, 2004.
[117] LU L, DING W, LIU J, et al. Flexible PVDF based piezoelectric nanogenerators [J]. Nano Energy, 2020, 78: 105251.
[118] TAI L C. 个人电脑与游戏应用激光鼠标介绍 [J]. 电子与电脑, 2008, (9): 3.
[119] YU X, XIE Z, YU Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality [J]. Nature, 2019, 575(7783): 473-9.
[120] ZHU M, SUN Z, ZHANG Z, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications [J]. Sci Adv, 2020, 6(19): eaaz8693.
[121] YIN J, HINCHET R, SHEA H, et al. Wearable soft technologies for haptic sensing and feedback [J]. Advanced Functional Materials, 2021, 31(39): 2007428.
[122] 吴金坤. PVDF的特性及其生产现状 [J]. 化工新型材料, 1998, 26(12): 4.
[123] KVAVADZE E, BAR-YOSEF O, BELFER-COHEN A, et al. 30,000-Year-Old Wild Flax Fibers [J]. Science, 2009, 325(5946): 1359-.
[124] CASTANO L M, FLATAU A B. Smart fabric sensors and e-textile technologies: a review [J]. Smart Materials and structures, 2014, 23(5): 053001.
[125] WENG W, YANG J, ZHANG Y, et al. A route toward smart system integration: from fiber design to device construction [J]. Advanced Materials, 2020, 32(5): 1902301.
[126] CHEN G, LI Y, BICK M, et al. Smart Textiles for Electricity Generation [J]. Chemical Reviews, 2020, 120(8): 3668-720.
[127] DONG C, LEBER A, DAS GUPTA T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles [J]. Nature communications, 2020, 11(1): 1-9.
[128] ZHANG Z, HE T, ZHU M, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications [J]. npj Flexible Electronics, 2020, 4(1): 1-12.
[129] ZHU M, SHI Q, HE T, et al. Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring [J]. ACS Nano, 2019, 13(2).
[130] HOSSAIN G, RAHMAN M, HOSSAIN I Z, et al. Wearable Socks with Single Electrode Triboelectric Textile Sensors for Monitoring Footsteps [J]. 2021.
[131] FAN W, HE Q, MENG K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring [J]. Sci Adv, 2020, 6(11): eaay2840.
[132] TIAN X, LEE P M, TAN Y J, et al. Wireless body sensor networks based on metamaterial textiles [J]. Nature Electronics, 2019, 2(6): 243-51.
[133] LOKE G, KHUDIYEV T, WANG B, et al. Digital electronics in fibres enable fabric-based machine-learning inference [J]. Nature communications, 2021, 12(1): 1-9.
[134] LANDOLFA M, BARTH F. Vibrations in the orb web of the spider Nephila clavipes: cues for discrimination and orientation [J]. Journal of Comparative Physiology A, 1996, 179(4): 493-508.
[135] OTTO A W, ELIAS D O, HATTON R L. Modeling transverse vibration in spider webs using frequency-based dynamic substructuring [M]. Dynamics of Coupled Structures, Volume 4. Springer. 2018: 143-55.
修改评论