中文版 | English
题名

Temporally sparse data assimilation for the small-scale reconstruction of turbulence

作者
通讯作者Wang, Jianchun
发表日期
2022-06-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号34期号:6
摘要
Previous works have shown that the small-scale information of incompressible homogeneous isotropic turbulence is fully recoverable as long as sufficient large-scale structures are continuously enforced through temporally continuous data assimilation (TCDA). In the current work, we show that the assimilation time step can be relaxed to values about 1-2 orders larger than that for TCDA, using a temporally sparse data assimilation (TSDA) strategy, while the accuracy is still maintained or even slightly better in the presence of non-negligible large-scale errors. One-step data assimilation (ODA) is examined to unravel the mechanism of TSDA. It is shown that the relaxation effect for errors above the assimilation wavenumber k(a) is responsible for the error decay in ODA. Meanwhile, the errors contained in the large scales can propagate into small scales and make the high-wavenumber ( k > k(a)) error noise decay slower with TCDA than TSDA. This mechanism is further confirmed by incorporating different levels of errors in the large scales of the reference flow field. The advantage of TSDA is found to grow with the magnitude of the incorporated errors. Thus, it is potentially more beneficial to adopt TSDA if the reference data contain non-negligible errors. Finally, an outstanding issue raised in previous works regarding the possibility of recovering the dynamics of sub-Kolmogorov scales using direct numerical simulation data at a Kolmogorov scale resolution is also discussed. Published under an exclusive license by AIP Publishing.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)[91952104,92052301,12172161,91752201] ; National Numerical Windtunnel Project[NNW2019ZT1-A04] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103] ; Department of Science and Technology of Guangdong Province[2020B1212030001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000807731600003
出版者
EI入藏号
20222412218021
EI主题词
Computational complexity ; Turbulence
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343095
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Hong Kong 518055, Guangdong, Peoples R China
4.Hong Kong Univ Sci & Technol, Dept Ocean Sci, Hong Kong 999077, Peoples R China
第一作者单位南方科技大学;  力学与航空航天工程系
通讯作者单位南方科技大学;  力学与航空航天工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Wang, Yunpeng,Yuan, Zelong,Xie, Chenyue,et al. Temporally sparse data assimilation for the small-scale reconstruction of turbulence[J]. PHYSICS OF FLUIDS,2022,34(6).
APA
Wang, Yunpeng,Yuan, Zelong,Xie, Chenyue,&Wang, Jianchun.(2022).Temporally sparse data assimilation for the small-scale reconstruction of turbulence.PHYSICS OF FLUIDS,34(6).
MLA
Wang, Yunpeng,et al."Temporally sparse data assimilation for the small-scale reconstruction of turbulence".PHYSICS OF FLUIDS 34.6(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Yunpeng]的文章
[Yuan, Zelong]的文章
[Xie, Chenyue]的文章
百度学术
百度学术中相似的文章
[Wang, Yunpeng]的文章
[Yuan, Zelong]的文章
[Xie, Chenyue]的文章
必应学术
必应学术中相似的文章
[Wang, Yunpeng]的文章
[Yuan, Zelong]的文章
[Xie, Chenyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。