题名 | Temporally sparse data assimilation for the small-scale reconstruction of turbulence |
作者 | |
通讯作者 | Wang, Jianchun |
发表日期 | 2022-06-01
|
DOI | |
发表期刊 | |
ISSN | 1070-6631
|
EISSN | 1089-7666
|
卷号 | 34期号:6 |
摘要 | Previous works have shown that the small-scale information of incompressible homogeneous isotropic turbulence is fully recoverable as long as sufficient large-scale structures are continuously enforced through temporally continuous data assimilation (TCDA). In the current work, we show that the assimilation time step can be relaxed to values about 1-2 orders larger than that for TCDA, using a temporally sparse data assimilation (TSDA) strategy, while the accuracy is still maintained or even slightly better in the presence of non-negligible large-scale errors. One-step data assimilation (ODA) is examined to unravel the mechanism of TSDA. It is shown that the relaxation effect for errors above the assimilation wavenumber k(a) is responsible for the error decay in ODA. Meanwhile, the errors contained in the large scales can propagate into small scales and make the high-wavenumber ( k > k(a)) error noise decay slower with TCDA than TSDA. This mechanism is further confirmed by incorporating different levels of errors in the large scales of the reference flow field. The advantage of TSDA is found to grow with the magnitude of the incorporated errors. Thus, it is potentially more beneficial to adopt TSDA if the reference data contain non-negligible errors. Finally, an outstanding issue raised in previous works regarding the possibility of recovering the dynamics of sub-Kolmogorov scales using direct numerical simulation data at a Kolmogorov scale resolution is also discussed. Published under an exclusive license by AIP Publishing. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China (NSFC)[91952104,92052301,12172161,91752201]
; National Numerical Windtunnel Project[NNW2019ZT1-A04]
; Shenzhen Science and Technology Program[KQTD20180411143441009]
; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103]
; Department of Science and Technology of Guangdong Province[2020B1212030001]
|
WOS研究方向 | Mechanics
; Physics
|
WOS类目 | Mechanics
; Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000807731600003
|
出版者 | |
EI入藏号 | 20222412218021
|
EI主题词 | Computational complexity
; Turbulence
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
|
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:10
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/343095 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Hong Kong 518055, Guangdong, Peoples R China 4.Hong Kong Univ Sci & Technol, Dept Ocean Sci, Hong Kong 999077, Peoples R China |
第一作者单位 | 南方科技大学; 力学与航空航天工程系 |
通讯作者单位 | 南方科技大学; 力学与航空航天工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang, Yunpeng,Yuan, Zelong,Xie, Chenyue,et al. Temporally sparse data assimilation for the small-scale reconstruction of turbulence[J]. PHYSICS OF FLUIDS,2022,34(6).
|
APA |
Wang, Yunpeng,Yuan, Zelong,Xie, Chenyue,&Wang, Jianchun.(2022).Temporally sparse data assimilation for the small-scale reconstruction of turbulence.PHYSICS OF FLUIDS,34(6).
|
MLA |
Wang, Yunpeng,et al."Temporally sparse data assimilation for the small-scale reconstruction of turbulence".PHYSICS OF FLUIDS 34.6(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论