[1] Crampton A. Global aging: emerging challenges[J]. The Pardee Papers, 2009, 6: 1-25.
[2] Weiss D J, Nelson A, Vargas-Ruiz C A, et al. Global maps of travel time to healthcare facilities[J]. Nature Medicine, 2020, 26(12): 1835-1838.
[3] Ma X. C., Zhang X. Q., Fang P. Flexible film-transducers based on polypropylene piezoelectrets: Fabrication, properties, and applications in wearable devices[J]. Sensors and Actuators A: Physical, 2017, 256: 35-42.
[4] Khan M A, Salah K. IoT security: Review, blockchain solutions, and open challenges[J]. Future generation computer systems, 2018, 82: 395-411.
[5] Mois G, Folea S, Sanislav T. Analysis of three IoT-based wireless sensors for environmental monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 2056-2064.
[6] Chow P. C. Y., Someya T. Organic photodetectors for next‐generation wearable electronics[J]. Advanced Materials, 2020, 32(15): 1902045.
[7] Xu K, Lu Y, Takei K. Multifunctional skin‐inspired flexible sensor systems for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(3): 1800628.
[8] Lee J, Llerena Zambrano B, Woo J, et al. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications[J]. Advanced Materials, 2020, 32(5): 1902532.
[9] Lochner C M, Khan Y, Pierre A, et al. All-organic optoelectronic sensor for pulse oximetry[J]. Nature communications, 2014, 5(1): 1-7.
[10] Choi S, Lee H, Ghaffari R, et al. Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials[J]. Advanced materials, 2016, 28(22): 4203-4218.
[11] Wang Z L. Self-powered nanotech[J]. Scientific American, 2008, 298(1): 82-87.
[12] Park S, Heo S W, Lee W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018, 561(7724): 516-521.
[13] Zang Y, Zhang F, Di C, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[14] Wang D, Wang L, Lou Z, et al. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors[J]. Nano Energy, 2020, 78: 105252.
[15] Zhang J, Ye S, Liu H, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors[J]. Nano Energy, 2020, 77: 105300.
[16] Yang T, Pan H, Tian G, et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy, 2020, 72: 104706.
[17] Yao G, Xu L, Cheng X, et al. Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing[J]. Advanced Functional Materials, 2020, 30(6): 1907312.
[18] Fang P, Qiu X, Wirges W, et al. Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1079-1087.
[19] Fang P, Wirges W, Wegener M, et al. Cellular polyethylene-naphthalate films for ferroelectret applications: foaming, inflation and stretching, assessment of electromechanically relevant structural features[J]. e-Polymers, 2008, 8(1).
[20] Sessler G M, Hillenbrand J. Electromechanical response of cellular electret films[C]//10th International Symposium on Electrets (ISE 10). Proceedings (Cat. No. 99 CH36256). IEEE, 1999: 261-264.
[21] Paajanen M, Valimaki H, Lekkala J. Modelling the sensor and actuator operations of the ElectroMechanical Film EMFi[C]//10th International Symposium on Electrets (ISE 10). Proceedings (Cat. No. 99 CH36256). IEEE, 1999: 735-738.
[22] Wirges W, Wegener M, Voronina O, et al. Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly (ethylene terephthalate) films[J]. Advanced Functional Materials, 2007, 17(2): 324-329.
[23] Saarimaki E, Paajanen M, Savijarvi A, et al. Novel heat durable electromechanical film: processing for electromechanical and electret applications[J]. IEEE transactions on dielectrics and electrical insulation, 2006, 13(5): 963-972.
[24] Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J]. Nano Energy, 2021, 80: 105567.
[25] Mo X, Zhou H, Li W, et al. Piezoelectrets for wearable energy harvesters and sensors[J]. Nano Energy, 2019, 65: 104033.
[26] Graz I, Kaltenbrunner M, Keplinger C, et al. Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones[J]. Applied physics letters, 2006, 89(7): 073501.
[27] Mellinger A, Wegener M, Wirges W, et al. Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites[J]. Ferroelectrics, 2006, 331(1): 189-199.
[28] Fang P, Holländer L, Wirges W, et al. Piezoelectric d33 coefficients in foamed and layered polymer piezoelectrets from dynamic mechano-electrical experiments, electro-mechanical resonance spectroscopy and acoustic-transducer measurements[J]. Measurement Science and Technology, 2012, 23(3): 035604.
[29] Dhanumalayan E, Joshi G M. Performance properties and applications of polytetrafluoroethylene (PTFE)—a review[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 247-268.
[30] 夏钟福. 驻极体[M]. 科学出版社, 2001.
[31] Maddah H A. Polypropylene as a promising plastic: A review[J]. Am. J. Polym. Sci, 2016, 6(1): 1-11.
[32] Park D Y, Joe D J, Kim D H, et al. Self‐powered Real‐time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors[J]. Advanced Materials, 2017, 29(37): 1702308.
[33] Fang P, Ma X, Li X, et al. Fabrication, structure characterization, and performance testing of piezoelectret-film sensors for recording body motion[J]. IEEE Sensors Journal, 2017, 18(1): 401-412.
[34] Wu Q, Qiao Y, Guo R, et al. Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring[J]. ACS nano, 2020, 14(8): 10104-10114.
[35] Kim J H, Cho K G, Cho D H, et al. Ultra‐Sensitive and Stretchable Ionic Skins for High‐Precision Motion Monitoring[J]. Advanced Functional Materials, 2021, 31(16): 2010199.
[36] Zhang Z, Gui X, Hu Q, et al. Highly sensitive capacitive pressure sensor based on a micropyramid array for health and motion monitoring[J]. Advanced Electronic Materials, 2021, 7(7): 2100174.
[37] Han F, Li M, Ye H, et al. Materials, electrical performance, mechanisms, applications, and manufacturing approaches for flexible strain sensors[J]. Nanomaterials, 2021, 11(5): 1220.
[38] Chen L, Cao J, Li G, et al. Property Assessment and Application Exploration for Layered Polytetrafluoroethylene Piezoelectrets[J]. IEEE Sensors Journal, 2019, 19(23): 11262-11271.
[39] You I, Mackanic D G, Matsuhisa N, et al. Artificial Multimodal Receptors Based on Ion Relaxation Dynamics[J]. Science, 2020, 370(6519): 961-965.
[40] Prada E J A, Higinio A P. A low-complexity PPG pulse detection method for accurate estimation of the pulse rate variability (PRV) during sudden decreases in the signal amplitude[J]. Physiological Measurement, 2020, 41(3): 035001.
[41] Naresh S, Mahesh C H S, Viswanathan G. Design and Development of Robust Framework to Monitor Arterial Oxygen Saturation (Sp02) Using PPG Signal[C]//2021 Fourth International Conference on Microelectronics, Signals & Systems (ICMSS). IEEE, 2021: 1-6.
[42] Badugu R, Reece E A, Lakowicz J R. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring[J]. Journal of biomedical optics, 2018, 23(5): 057005.
[43] Dang W, Manjakkal L, Navaraj W T, et al. Stretchable wireless system for sweat pH monitoring[J]. Biosensors and Bioelectronics, 2018, 107: 192-202.
[44] Zhao J, Lin Y, Wu J, et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring[J]. ACS sensors, 2019, 4(7): 1925-1933.
[45] Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature materials, 2010, 9(10): 859-864.
[46] You I, Choi S E, Hwang H, et al. E‐skin tactile sensor matrix pixelated by position‐registered conductive microparticles creating pressure‐sensitive selectors[J]. Advanced Functional Materials, 2018, 28(31): 1801858.
[47] Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure‐sensitive electronic skin based on a bioinspired hierarchical structural array[J]. Advanced Materials, 2016, 28(26): 5300-5306.
[48] Wang K, Lou Z, Wang L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors[J]. ACS nano, 2019, 13(8): 9139-9147.
[49] Yan J, Ma Y, Jia G, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2022, 431: 133458.
[50] Lu Y, Qu X, Zhao W, et al. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors[J]. Research, 2020, 2020.
[51] Wang L, Jackman J A, Tan E L, et al. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators[J]. Nano Energy, 2017, 36: 38-45.
[52] Zhao S, Ran W, Wang D, et al. 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 32023-32030.
[53] Choi J, Kwon D, Kim K, et al. Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2019, 12(1): 1698-1706.
[54] Yoon S G, Park B J, Chang S T. Highly sensitive piezocapacitive sensor for detecting static and dynamic pressure using ion-gel thin films and conductive elastomeric composites[J]. ACS applied materials & interfaces, 2017, 9(41): 36206-36219.
[55] Boutry C M, Nguyen A, Lawal Q O, et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Advanced Materials, 2015, 27(43): 6954-6961.
[56] Pang C, Koo J H, Nguyen A, et al. Highly skin‐conformal microhairy sensor for pulse signal amplification[J]. Advanced materials, 2015, 27(4): 634-640.
[57] Xiong Y, Shen Y, Tian L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano energy, 2020, 70: 104436.
[58] Ben Atitallah B, Rajendran D, Hu Z, et al. Piezo-resistive pressure and strain sensors for biomedical and tele-manipulation applications[J]. Advanced Sensors for Biomedical Applications, 2021: 47-65.
[59] Fukada E. History and recent progress in piezoelectric polymers[J]. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 2000, 47(6): 1277-1290.
[60] Hillenbrand J, Sessler G M. DC-Biased piezoelectret film transducers for airborne ultrasound[J]. Ferroelectrics, 2014, 472(1): 77-89.
[61] Chang C, Tran V H, Wang J, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency[J]. Nano letters, 2010, 10(2): 726-731.
[62] Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin[J]. Nature materials, 2016, 15(9): 937-950.
[63] Hwang G T, Annapureddy V, Han J H, et al. Self‐powered wireless sensor node enabled by an aerosol‐deposited PZT flexible energy harvester[J]. Advanced Energy Materials, 2016, 6(13): 1600237.
[64] Qi Y, McAlpine M C. Nanotechnology-enabled flexible and biocompatible energy harvesting[J]. Energy & Environmental Science, 2010, 3(9): 1275-1285.
[65] You Q, Lou K, Zhang X, et al. Flexible sensors based on piezoelectret films[C]//2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA). IEEE, 2011: 395-398.
[66] Dagdeviren C, Su Y, Joe P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring[J]. Nature communications, 2014, 5(1): 1-10.
[67] Shi S, Geng W, Bi K, et al. High Sensitivity MEMS Accelerometer Using PZT-Based Four L-Shaped Beam Structure[J]. IEEE Sensors Journal, 2022.
[68] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano energy, 2012, 1(2): 328-334.
[69] Fan F R, Lin L, Zhu G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano letters, 2012, 12(6): 3109-3114.
[70] Zi Y, Niu S, Wang J, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators[J]. Nature communications, 2015, 6(1): 1-8.
[71] Wang S, Zi Y, Zhou Y S, et al. Molecular surface functionalization to enhance the power output of triboelectric nanogenerators[J]. Journal of Materials Chemistry A, 2016, 4(10): 3728-3734.
[72] Tang W, Jiang T, Fan F R, et al. Liquid‐metal electrode for high‐performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%[J]. Advanced Functional Materials, 2015, 25(24): 3718-3725.
[73] Wang J, Wu C, Dai Y, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J]. Nature communications, 2017, 8(1): 1-8.
[74] Xu L, Bu T Z, Yang X D, et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J]. Nano Energy, 2018, 49: 625-633.
[75] Gerhard-Multhaupt R. Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(5): 850-859.
[76] Sessler G M, West J E. Self‐biased condenser microphone with high capacitance[J]. The Journal of the Acoustical Society of America, 1962, 34(11): 1787-1788.
[77] Chen S, Wu N, Lin S, et al. Hierarchical Elastomer Tuned Self-powered Pressure Sensor for Wearable Multifunctional Cardiovascular Electronics[J]. Nano Energy, 2020, 70: 104460.
[78] Fang P, Peng Y, Lin W H, et al. Wrist Pulse Recording With a Wearable Piezoresistor-Piezoelectret Compound Sensing System and Its Applications in Health Monitoring[J]. IEEE Sensors Journal, 2021, 21(18): 20921-20930.
[79] Wu W, Zhang Y, Jiang J, et al. An electroencephalographic signature predicts antidepressant response in major depression[J]. Nature biotechnology, 2020, 38(4): 439-447.
[80] Zhukov S, Ma X, Seggern H, et al. Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity[J]. Applied Physics Letters, 2020, 117(11): 112901.
[81] 于新华,曹江浪,于雷,李光林,方鹏.应用于人工皮肤的压电驻极体触觉传感阵列研究[J].电子元件与材料,2019,38(05):63-67+73.DOI:10.14106/j.cnki.1001-2028.2019.05.012.
[82] Fang P, Wang F, Wirges W, et al. Three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films[J]. Applied Physics A, 2011, 103(2): 455-461.
[83] Bauer S. Piezo-, pyro-and ferroelectrets: soft transducer materials for electromechanical energy conversion[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(5): 953-962.
[84] Zhong J, Ma Y, Song Y, et al. A flexible piezoelectret actuator/sensor patch for mechanical human–machine interfaces[J]. ACS nano, 2019, 13(6): 7107-7116.
[85] Han L, Zeng W, Dong Y, et al. Mapping and Simultaneous Detection of Arterial and Venous Pulses using Large‐Scale High‐Density Flexible Piezoelectret Sensor Array[J]. Advanced Electronic Materials, 2022: 2200012.
[86] 余东海, 王成勇, 成晓玲, 等. 磁控溅射镀膜技术的发展[J]. 真空, 2009, 46(2): 19-25.
[87] Chorsi M T, Curry E J, Chorsi H T, et al. Piezoelectric biomaterials for sensors and actuators[J]. Advanced Materials, 2019, 31(1): 1802084.
[88] Zhang Q, Jiang T, Ho D, et al. Transparent and self-powered multistage sensation matrix for mechanosensation application[J]. ACS nano, 2018, 12(1): 254-262.
[89] Qiu X, Mellinger A, Wegener M, et al. Barrier discharges in cellular polypropylene ferroelectrets: How do they influence the electromechanical properties?[J]. Journal of applied physics, 2007, 101(10): 104112.
[90] Bauer S, Gerhard R, Sessler G M. Ferroelectrets: Soft electroactive foams for transducers[J]. 2004.
[91] Jiang Y, Dong K, Li X, et al. Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin‐Like Highly Sensitive Self‐Powered Haptic Sensors[J]. Advanced Functional Materials, 2021, 31(1): 2005584.
[92] Yao G, Xu L, Cheng X, et al. Bioinspired triboelectric nanogenerators as self‐powered electronic skin for robotic tactile sensing[J]. Advanced Functional Materials, 2020, 30(6): 1907312.
[93] Lin Z, Yang J, Li X, et al. Large‐scale and washable smart textiles based on triboelectric nanogenerator arrays for self‐powered sleeping monitoring[J]. Advanced Functional Materials, 2018, 28(1): 1704112.
[94] Zhang S. L., Lai Y. C., He X., et al. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement. Advanced Functional Materials, 2017, 27(25): 1606695~1606702.
[95] Liu S., Wang L., Wang Z., et al. Double-Channel Piezotronic Transistors for Highly Sensitive Pressure Sensing. ACS Nano, 2018, 12(2): 1732~1738.
[96] Wang B, Liu C, Xiao Y, et al. Ultrasensitive Cellular Fluorocarbon Piezoelectret Pressure Sensor for Self-powered Human Physiological Monitoring[J]. Nano Energy, 2017, 32: 42-49.
[97] Chen S, Wu N, Ma L, et al. Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor[J]. ACS applied materials & interfaces, 2018, 10(4): 3660-3667.
[98] Chu Y, Zhong J, Liu H, et al. Human Pulse Diagnosis for Medical Assessments Using a Wearable Piezoelectret Sensing System[J]. Advanced Functional Materials, 2018, 28(40): 1803413.
[99] Alametsä J, Viik J, Alakare J, et al. Ballistocardiography in sitting and horizontal positions[J]. Physiological measurement, 2008, 29(9): 1071.
[100] 廖家明. 基于P(VDF-TRFE)的柔性纳米可穿戴脉搏传感器设计及其应用研究[D].杭州电子科技大学,2021.DOI:10.27075/d.cnki.ghzdc.2021.000574.
[101] Can Y S, Arnrich B, Ersoy C. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey[J]. Journal of biomedical informatics, 2019, 92: 103139.
[102] Roomkham S, Lovell D, Cheung J, et al. Promises and challenges in the use of consumer-grade devices for sleep monitoring[J]. IEEE reviews in biomedical engineering, 2018, 11: 53-67.
[103] Sleep disorders and sleep deprivation: an unmet public health problem[J]. 2006.
[104] Yacchirema D C, Sarabia-Jácome D, Palau C E, et al. A smart system for sleep monitoring by integrating IoT with big data analytics[J]. IEEE Access, 2018, 6: 35988-36001.
[105] Alice L Y L, Binghe G, Shuang C, et al. Artificial intelligence meets traditional Chinese medicine: a bridge to opening the magic box of sphygmopalpation for pulse pattern recognition[J]. Digital Chinese Medicine, 2021, 4(1): 1-8.
[106] van Twist E, Salverda H H, Te Pas A B. Comparing pulse rate measurement in newborns using conventional and dry‐electrode ECG monitors[J]. Acta Paediatrica, 2022.
[107] Li Y. Design of ECG Signal Detection Circuit Based on Pacing Pulse Suppression[C]//2021 IEEE International Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2021: 664-669.
[108] Aziz M H, Hasan M K, Mahmood A, et al. Automated cardiac pulse cycle analysis from photoplethysmogram (PPG) signals generated from fingertip videos captured using a smartphone to measure blood hemoglobin levels[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(5): 1385-1396.
[109] Meng K, Xiao X, Wei W, et al. Wearable pressure sensors for pulse wave monitoring[J]. Advanced Materials, 2022: 2109357.
[110] 马威. 用STI指标综合评价男大学生左心室收缩功能的实验研究[D].西安体育学院,2011.
[111] 李景唐. 中医脉象的客观描述和检测. 中国医疗器械杂志, 2001, 25(6): 318~322.
[112] 蒋胡林. 基于驻极体压力传感器的脉搏监测系统[D].华中科技大学,2017.
[113] Hsu C H, Tsai M Y, Huang G S, et al. Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction[J]. Acta Anaesthesiologica Taiwanica, 2012, 50(1): 12-18.
[114] B. S. Bozhenko,“Seismocardiography—a new method in the study of functional conditions of the heart [Article in Russian],” Ter Arkh, vol. 33, pp. 55–64, 1961.
[115] D. M. Salerno and J. Zanetti,“Seismocardiography for monitoring changes in left ventricular function during ischemia,” Chest J., vol. 100, pp. 991–993, 1991.
[116] Shaffer F, Ginsberg J P. An overview of heart rate variability metrics and norms[J]. Frontiers in public health, 2017: 258.
[117] Rahman S, Habel M, Contrada R J. Poincaré plot indices as measures of sympathetic cardiac regulation: Responses to psychological stress and associations with pre-ejection period[J]. International Journal of Psychophysiology, 2018, 133: 79-90.
[118] Hsu C H, Tsai M Y, Huang G S, et al. Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction[J]. Acta Anaesthesiologica Taiwanica, 2012, 50(1): 12-18.
[119] Salvi P, Magnani E, Valbusa F, et al. Comparative study of methodologies for pulse wave velocity estimation[J]. Journal of human hypertension, 2008, 22(10): 669-677.
[120] Van Bortel L M, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity[J]. Journal of hypertension, 2012, 30(3): 445-448.
[121] Phan T S, Li J K J, Segers P, et al. Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites[J]. Journal of the American Heart Association, 2016, 5(9): e003733.
[122] Taebi A, Solar B E, Bomar A J, et al. Recent advances in seismocardiography[J]. Vibration, 2019, 2(1): 64-86.
[123] Zhang J. Effect of age and sex on heart rate variability in healthy subjects[J]. Journal of manipulative and physiological therapeutics, 2007, 30(5): 374-379.
[124] Choudhary T, Sharma L N, Bhuyan M K. Automatic detection of aortic valve opening using seismocardiography in healthy individuals[J]. IEEE journal of biomedical and health informatics, 2018, 23(3): 1032-1040.
[125] Fox K, Borer J S, Camm A J, et al. Resting heart rate in cardiovascular disease[J]. Journal of the American College of Cardiology, 2007, 50(9): 823-830.
[126] 曲瑒. 远隔缺血处理对健康成年人血压及心率变异性影响的研究[D].吉林大学,2021.DOI:10.27162/d.cnki.gjlin.2021.005392.
[127] Bhuiyan M S. A Critical look at the data to find a normal range of values for Heart Rate Variability[C]//2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech). IEEE, 2021: 337-340.
[128] 罗志昌, 张松, 杨文鸣, 等. 脉搏波波形特征信息的研究[J]. 北京工业大学学报, 1996(1):71-79.
[129] Millasseau S C, Kelly R P, Ritter J M, et al. Determination of age-related increases in large artery stiffness by digital pulse contour analysis[J]. Clinical science, 2002, 103(4): 371-377.
[130] Kohara K, Tabara Y, Oshiumi A, et al. Radial augmentation index: a useful and easily obtainable parameter for vascular aging[J]. American journal of hypertension, 2005, 18(S1): 11S-14S.
[131] Shimizu M, Kario K. Role of the augmentation index in hypertension[J]. Therapeutic advances in cardiovascular disease, 2008, 2(1): 25-35.
[132] 孟柯妤. 用于人体健康监测的体表脉搏传感技术研究[D].重庆大学,2020.DOI:10.27670/d.cnki.gcqdu.2020.000155.
[133] Chen G, Au C, Chen J. Textile triboelectric nanogenerators for wearable pulse wave monitoring[J]. Trends in Biotechnology, 2021, 39(10): 1078-1092.
[134] Simonetti G D, Eisenberger U, Bergmann I P, et al. Pulse contour analysis: a valid assessment of central arterial stiffness in children?[J]. Pediatric nephrology, 2008, 23(3): 439-444.
[135] Roth G A, Johnson C O, Abate K H, et al. The burden of cardiovascular diseases among US states, 1990-2016[J]. JAMA cardiology, 2018, 3(5): 375-389.杨惠锋. 血管弹性与脉搏波波形关系的研究[D].重庆理工大学,2009.
修改评论