[1] Tian Q, Yuan Y C, Rong M Z, et al. A thermally remendable epoxy resin[J]. Journal of Materials Chemistry, 2009, 19(9): 1289-1296.
[2] Zhou J, Lucas J P. Hygrothermal effects of epoxy resin. Part I: the nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512.
[3] Luft J H. Improvements in epoxy resin embedding methods[J]. The Journal of biophysical and biochemical cytology, 1961, 9(2): 409.
[4] Jeon H R, Park J H, Shon M Y. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(3): 849-853.
[5] Das G, Kalita R D, Deka H, et al. Biodegradation, cytocompatability and performance studies of vegetable oil based hyperbranched polyurethane modified biocompatible sulfonated epoxy resin/clay nanocomposites[J]. Progress in Organic Coatings, 2013, 76(7-8): 1103-1111.
[6] Lee S B, Lee H J, Hong I K. Diluent filler particle size effect for thermal stability of epoxy type resin[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(2): 635-641.
[7] Ma C, Sánchez-Rodríguez D, Kamo T. A comprehensive study on the oxidative pyrolysis of epoxy resin from fiber/epoxy composites: Product characteristics and kinetics[J]. Journal of Hazardous Materials, 2021, 412: 125329.
[8] Ramadan N, Taha M, La Rosa A D, et al. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants[J]. Materials, 2021, 14(5): 1181.
[9] Yang S, Huo S, Wang J, et al. A highly fire-safe and smoke-suppressive single- component epoxy resin with switchable curing temperature and rapid curing rate[J]. Composites Part B: Engineering, 2021, 207: 108601.
[10] Yang C, Yang Z G. Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink‐jet printing[J]. Journal of applied polymer science, 2013, 129(1): 187-192.
[11] Jin F L, Kim H Y, Park S J. Effect of fluorine functional groups on surface and mechanical interfacial properties of epoxy resins[J]. Journal of fluorine chemistry, 2007, 128(3): 184-189.
[12] Wazalwar R, Sahu M, Raichur A M. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: Current status and road to industrialization[J]. Nanoscale Advances, 2021, 3(10): 2741-2776.
[13] Jiang W, Jin F L, Park S J. Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles[J]. Journal of Industrial and Engineering chemistry, 2012, 18(2): 594-596.
[14] Zhou J, Lucas J P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy[J]. Polymer, 1999, 40(20): 5505-5512.
[15] 余彪, 陈智坚, 潘港元, 陈子明, 郭森. 双酚 A 型环氧树脂基结构胶的制备及性 能研究[J]. 合成材料老化与应用, 2020, 49(06): 8-10.
[16] Yang C, Yang Z G. Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink‐jet printing[J]. Journal of applied polymer science, 2013, 129(1): 187-192.
[17] Czub P. Synthesis of high‐molecular‐weight epoxy resins from modified natural oils and Bisphenol A or BisphenolA‐based epoxy resins[J]. Polymers for Advanced Technologies, 2009, 20(3): 194-208.
[18] Wu C C, Lee W J. Synthesis and properties of copolymer epoxy resins prepared from copolymerization of bisphenol A, epichlorohydrin, and liquefied Dendrocalamus latiflorus[J]. Journal of applied polymer science, 2010, 116(4): 2065-2073.
[19] 李 金 娥 . 双 酚 F 型 环 氧 树 脂 /聚 噻 吩 复 合 吸 波 材 料 研 究 [J]. 热 固 性 树 脂, 2021, 36(03): 21-24.
[20] Wang C, Tang Y, Zhou Y, et al. Cyanate ester resins toughened with epoxy- terminated and fluorine-containing polyaryletherketone[J]. Polymer Chemistry, 2021, 12(26): 3753-3761.
[21] Maier G. Low dielectric constant polymers for microelectronics[J]. Progress in polymer science, 2001, 26(1): 3-65.
[22] Jin F L, Kim H Y, Park S J. Effect of fluorine functional groups on surface and mechanical interfacial properties of epoxy resins[J]. Journal of fluorine chemistry, 2007, 128(3): 184-189.
[23] Lv G, Jensen E, Shan N, et al. Effect of aromatic/aliphatic structure and cross- linking density on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2021, 3(3): 1555-1562.
[24] Back J H, Hwang C, Baek D, et al. Synthesis of urethane-modified aliphatic epoxy using a greenhouse gas for epoxy composites with tunable properties: Toughened polymer, elastomer, and pressure-sensitive adhesive[J]. Composites Part B: Engineering, 2021, 222: 109058.
[25] Tao Z, Yang S, Chen J, et al. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins[J]. European Polymer Journal, 2007, 43(4): 1470-1479.
[26] Gao N, Liu W Q, Yan Z L, et al. Synthesis and properties of transparent cycloaliphatic epoxy–silicone resins for opto-electronic devices packaging[J]. Optical Materials, 2013, 35(3): 567-575.
[27] Liu X F, Xiao Y F, Luo X, et al. Flame-Retardant multifunctional epoxy resin with high performances[J]. Chemical Engineering Journal, 2022, 427: 132031.
[28] Lee M C, Ho T H, Wang C S. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application[J]. Journal of Applied Polymer Science, 1996, 62(1): 217-225.
[29] Aouf C, Nouailhas H, Fache M, et al. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin[J]. European Polymer Journal, 2013, 49(6): 1185-1195.
[30] Mo J, Ma W, Zhang W, et al. Structure and properties of carbon intercalated halloysite and its organosilicone hybrid film with low dielectric constant[J]. Materials & Design, 2017, 128: 56-63.
[31] Lu J, Wang B, Jia P, et al. Designing advanced 0D-2D hierarchical structure for Epoxy resin to accomplish exceeding thermal management and safety[J]. Chemical Engineering Journal, 2022, 427: 132046.
[32] Kornmann X, Lindberg H, Berglund L A. Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure[J]. Polymer, 2001, 42(10): 4493-4499.
[33] Xu H J, Jin F L, Park S J. Synthesis of a novel phosphorus-containing flame retardant for epoxy resins[J]. Bulletin of the Korean Chemical Society, 2009, 30(11): 2643-2646.
[34] Shao Z B, Zhang M X, Li Y, et al. A novel multi-functional polymeric curing agent: synthesis, characterization, and its epoxy resin with simultaneous excellent flame retardance and transparency[J]. Chemical Engineering Journal, 2018, 345: 471-482.
[35] Yu Z, Ma S, Liu Y, et al. Facile synthesis of bio-based latent curing agent and its high-Tg epoxy network[J]. European Polymer Journal, 2022, 164: 110965.
[36] Chen Z, Wang L, Lin J, et al. A theoretical insight into the curing mechanism of phthalonitrile resins promoted by aromatic amines[J]. Physical Chemistry Chemical Physics, 2021, 23(32): 17300-17309.
[37] Wang J W, Li Y, Nie W, et al. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines[J]. Nature communications, 2021, 12(1): 1-10.
[38] Gröger H. Biocatalytic concepts for synthesizing amine bulk chemicals: Recent approaches towards linear and cyclic aliphatic primary amines and ω-substituted derivatives thereof[J]. Applied microbiology and biotechnology, 2019, 103(1): 83- 95.
[39] Wazarkar K, Sabnis A. Cardanol based anhydride curing agent for epoxy coatings[J]. Progress in Organic Coatings, 2018, 118: 9-21.
[40] Park S J, Jin F L. Thermal stabilities and dynamic mechanical properties of sulfone- containing epoxy resin cured with anhydride[J]. Polymer degradation and stability, 2004, 86(3): 515-520.
[41] Shimada N, Takahashi N, Ohse N, et al. Synthesis of Weinreb amides using diboronic acid anhydride-catalyzed dehydrative amidation of carboxylic acids[J]. Chemical Communications, 2020, 56(86): 13145-13148.
[42] Parıldar R A, Ibik A A B. Characterization of tertiary amine and epoxy functional all-acrylic coating system[J]. Progress in Organic Coatings, 2013, 76(6): 955-958.
[43] Huo S, Wang J, Yang S, et al. Synthesis of a DOPO-containing imidazole curing agent and its application in reactive flame retarded epoxy resin[J]. Polymer Degradation and Stability, 2019, 159: 79-89.
[44] Chung* W W C, Leung S W F. Collaborative planning, forecasting and replenishment: a case study in copper clad laminate industry[J]. Production planning & control, 2005, 16(6): 563-574.
[45] 百 度 网 .中 国 挠 性 覆 铜 板 (FCCL)市 场 深 度 调 查 及 未 来 五 年 发 展 战 略 研 究 报 告 [EB/OL].
[2012-01-15].http://www.doczj.com/doc/de963486f90f76c661371abd- 5.html.
[46] Shamkhalichenar H, Bueche C J, Choi J W. Printed circuit board (pcb) technology for electrochemical sensors and sensing platforms[J]. Biosensors, 2020, 10(11): 159.
[47] Jensen S. The PCB story[J]. Ambio, 1972: 123-131.
[48] Dhanumalayan E, Joshi G M. Performance properties and applications of polytetrafluoroethylene (PTFE)—a review[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 247-268.
[49] Lenoble V, Laclautre C, Serpaud B, et al. As (V) retention and As (III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin[J]. Science of the Total Environment, 2004, 326(1-3): 197-207.
[50] Das A, Marnot A E C, Fallon J J, et al. Material extrusion-based additive manufacturing with blends of polypropylene and hydrocarbon resins[J]. ACS Applied Polymer Materials, 2019, 2(2): 911-921.
[51] Zeng K, Tu K N. Six cases of reliability study of Pb-free solder joints in electronic packaging technology[J]. Materials science and engineering: R: Reports, 2002, 38(2): 55-105.
[52] Johnson R O, Burlhis H S. Polyetherimide: A new high‐performance thermoplastic resin[C]//Journal of Polymer Science: Polymer Symposia. New York: Wiley Subscription Services, Inc. A Wiley Company, 1983, 70(1): 129-143.
[53] Liu Z, Tang C, Chen P, et al. Modification of carbon fiber by air plasma and its adhesion with BMI resin[J]. RSC advances, 2014, 4(51): 26881-26887.
[54] Ge M, Zhang J, Zhao C, et al. Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates[J]. Materials & Design, 2019, 182: 108028.
[55] Chung W Y, Brahma S, Hou S C, et al. Petroleum waste hydrocarbon resin as a carbon source modified on a Si composite as a superior anode material in lithium ion batteries[J]. Materials Chemistry and Physics, 2021, 259: 124011.
[56] Rysselberghe P V. Remarks concerning the Clausius-Mossotti law[J]. The Journal of Physical Chemistry, 2002, 36(4): 1152-1155.
[57] Chen N, Long C, Li Y, et al. A hamburger-structure imidazolium-modified silica/polyphenyl ether composite membrane with enhancing comprehensive performance for anion exchange membrane applications[J]. Electrochimica Acta, 2018, 268: 295-303.
[58] 杨建伟, 王正洲. 含磷双环戊二烯酚醛固化剂的合成及固化环氧树脂的性能[J]. 高分子材料科学与工程, 2017, 33(5): 7-13.
[59] Wu F, Zhou X, Yu X. Reaction mechanism, cure behavior and properties of a multifunctional epoxy resin, TGDDM, with latent curing agent dicyandiamide[J]. RSC advances, 2018, 8(15): 8248-8258.
[60] Wang P, Chen L, Xiao H. Flame retardant effect and mechanism of a novel DOPO based tetrazole derivative on epoxy resin[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 104-113.
[61] Luo H, Qiu J. Carbon nanotubes/epoxy resin metacomposites with adjustable radio- frequency negative permittivity and low dielectric loss[J]. Ceramics International, 2019, 45(1): 843-848.
[62] 张帆. 低介电聚酰亚胺的合成及其性能研究[D]. 深圳: 中国科学院大学 (中国科 学院深圳先进技术研究院)材料学科硕士学位, 2020: 13-16.
[63] Hassan N, Yau K L A, Wu C. Edge computing in 5G: A review[J]. IEEE Access, 2019, 7: 127276-127289.
[64] Lv G, Jensen E, Shen C, et al. Effect of amine hardener molecular structure on the thermal conductivity of epoxy resins[J]. ACS Applied Polymer Materials, 2020, 3(1): 259-267.
[65] Pittala R K, Ben B S, Ben B A. Self‐healing performance assessment of epoxy resin and amine hardener encapsulated polymethyl methacrylate microcapsules reinforced epoxy composite[J]. Journal of Applied Polymer Science, 2021, 138(23): 50550.
[66] Wegmann A. Chemical resistance of waterborne epoxy/amine coatings[J]. Progress in Organic Coatings, 1997, 32(1-4): 231-239.
[67] Jung M R, Horgen F D, Orski S V, et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms[J]. Marine Pollution Bulletin, 2018, 127: 704-716.
[68] Emwas A H, Roy R, McKay R T, et al. NMR spectroscopy for metabolomics research[J]. Metabolites, 2019, 9(7): 123.
[69] Amri F, Niazi A, Yazdanipour A. Three-pesticide residue analysis in tomato using a fast pressure variation in-syringe dispersive liquid-phase microextraction technique coupled with gas chromatography-mass spectrometry by assisting experimental design[J]. International Journal of Environmental Analytical Chemistry, 2020: 1-18.
[70] Cai H, Li P, Sui G, et al. Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC[J]. Thermochimica Acta, 2008, 473(1-2): 101-105.
[71] Redmann A, Oehlmann P, Scheffler T, et al. Thermal curing kinetics optimization of epoxy resin in Digital Light Synthesis[J]. Additive Manufacturing, 2020, 32: 101018.
[72] Zhao Y, Drummer D. Influence of filler content and filler size on the curing kinetics of an epoxy resin[J]. Polymers, 2019, 11(11): 1797.
[73] Lascano D, Quiles-Carrillo L, Balart R, et al. Kinetic analysis of the curing of a partially biobased epoxy resin using dynamic differential scanning calorimetry[J]. Polymers, 2019, 11(3): 391.
[74] Kuo C Y, Don T M, Lin Y T, et al. Synthesis of pH-sensitive sulfonamide-based hydrogels with controllable crosslinking density by post thermo-curing[J]. Journal of Polymer Research, 2019, 26(1): 1-9.
[75] Bannov A G, Popov M V, Kurmashov P B. Thermal analysis of carbon nanomaterials: advantages and problems of interpretation[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(1): 349-370.
[76] Flynn J H. Thermal analysis kinetics-problems, pitfalls and how to deal with them[J]. Journal of thermal analysis, 1988, 34(1): 367-381.
[77] 韩俊华, 吕建, 徐晓伟, 等. 环氧粉末涂料的固化动力学和固化工艺的研究[J]. 热固性树脂, 2010, 25(3): 1-5.
[78] 成健, 邵灏, 李振明, 等. 2, 4-二硝基咪唑含能锂盐的热分解行为及其对 AP 热 分解的催化作用[J]. 固体火箭技术, 2018, 4: 2-4.
[79] 赵一搏, 罗运军, 李晓萌, 等. BAMO-GAP 三嵌段共聚物的热分解动力学及反应 机理[J]. 高分子材料科学与工程, 2012, 28(11): 42-45.
[80] 孟琳, 杨超越, 高翼强. 非等温 DSC 法不饱和聚酯树脂固化反应动力学研究[J]. 热固性树脂, 2018, 5: 3-6.
[81] Rappaport T S, Shu S, Mayzus R, et al. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work![J]. IEEE Access, 2013, 1(1): 335-349.
[82] Dogra A, Jha R K, Jain S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies[J]. IEEE Access, 2020, 9: 67512-67547.
[83] Ahmad W S H M W, Radzi N A M, Samidi F S, et al. 5G technology: Towards dynamic spectrum sharing using cognitive radio networks[J]. IEEE Access, 2020, 8: 14460-14488.
[84] 师伟伦. 5G 无线通信技术概念及其应用[J]. 科学大众, 2020(2): 53-53.
[85] Wang L, Liu C, Shen S, et al. Low dielectric constant polymers for high speed communication network[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(4): 138-148.
[86] 祝大同. 低介电常数电路板用烯丙基化聚苯醚树脂[J]. 绝缘材料, 2001, 34(1):6.
[87] Huo W, Chen Y, Zhang Z, et al. Highly porous barium strontium titanate (BST) ceramic foams with low dielectric constant from particle‐stabilized foams[J]. Journal of the American Ceramic Society, 2018, 101(4): 1737-1746.
[88] Duann Y F, Liu T M, Cheng K C, et al. Thermal stability of some naphthalene-and phenyl-based epoxy resins[J]. Polymer Degradation and Stability, 2004, 84(2): 305- 310.
修改评论