[1] HE J, TRITT T M. Advances in thermoelectric materials research: Looking back and movingforward[J]. Science, 2017, 357(6358): eaak9997.
[2] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structuresto devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515.
[3] SLACK G, ROWE D. CRC Thermoelectrics Handbook[M]. CRC Press, Boca Raton, FL, 1995.
[4] TIE-JUN Z, et al. Recent advances in thermoelectric materials and devices[J]. Journal ofInorganic Materials, 2019, 34(3): 233.
[5] ZHU B, LIU X, WANG Q, et al. Realizing record high performance in n-type Bi 2 Te 3 -basedthermoelectric materials[J]. Energy & Environmental Science, 2020, 13(7): 2106-2114.
[6] POUDELB, HAOQ, MA Y,et al. High-thermoelectric performance of nanostructured bismuthantimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[7] PAN Y, LI J F. Thermoelectric performance enhancement in n-type Bi 2 (TeSe) 3 alloys owing tonanoscale inhomogeneity combined with a spark plasma-textured microstructure[J]. NPG AsiaMaterials, 2016, 8(6): e275-e275.
[8] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
[9] WU H, ZHAO L D, ZHENG F, et al. Broad temperature plateau for thermoelectric figure ofmerit ZT> 2 in phase-separated PbTe 0.7 S 0.3 [J]. Nature Communications, 2014, 5(1): 1-9.
[10] FU L, YIN M, WU D, et al. Large enhancement of thermoelectric properties in n-type PbTe viadual-site point defects[J]. Energy & Environmental Science, 2017, 10(9): 2030-2040.
[11] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance inhole-doped single-crystal SnSe[J]. Science, 2016, 351(6269): 141-144.
[12] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390): 778-783.
[13] NUNNA R, QIU P, YIN M, et al. Ultrahigh thermoelectric performance in Cu 2 Se-based hybrid materials with highly dispersed molecular CNTs[J]. Energy & Environmental Science, 2017,10(9): 1928-1935.
[14] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to highthermoelectric performance in AgSbTe 2 [J]. Science, 2021, 371(6530): 722-727.
[15] DR., T., J., et al. Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz[J]. Annalen der Physik, 1826, 82(1): 1-20.
[16] PELTIER J C A. Nouvelles expériences sur la caloricité des courans électriques[J]. Annales de Chimie et de Physique, 1834, 56: 371-386.
[17] THOMSON W. On a Mechanical Theory of Thermoelectric Currents.[J]. Proceedings of the Royal Society of Edinburgh, 1857, 3: 91-98.
[18] THOMSON, W. Dynamical Theory of Heat, Part VI. continued. A Mechanical Theory of Thermoelectric Currents in Crystalline Solids.[J]. Proceedings of the Royal Society of Edinburgh,1857, 3: 255-256.
[19] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 科学出版社, 2018.
[20] ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectricfigure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[21] SASSI S, CANDOLFI C, VANEY J B, et al. Assessment of the thermoelectric performance of polycrystalline p-type SnSe[J]. Applied Physics Letters, 2014, 104(21): 212105.
[22] CHEN C L, WANG H, CHEN Y Y, et al. Thermoelectric properties of p-type polycrystallineSnSe doped with Ag[J]. Journal of Materials Chemistry A, 2014, 2(29): 11171-11176.
[23] CHEN S, CAI K, ZHAO W. The effect of Te doping on the electronic structure and thermo-electric properties of SnSe[J]. Physica B: Condensed Matter, 2012, 407(21): 4154-4159.
[24] IMASATO K, FU C, PAN Y, et al. Metallic n-Type Mg 3 Sb 2 Single Crystals Demonstrate the Absence of Ionized Impurity Scattering and Enhanced Thermoelectric Performance[J]. Ad-vanced Materials, 2020, 32(16): 1908218.
[25] PAN Y, YAO M, HONG X, et al. Mg 3 (Bi, Sb) 2 single crystals towards high thermoelectricperformance[J]. Energy & Environmental Science, 2020, 13(6): 1717-1724.
[26] NAGAT A, GAMAL G, BELAL A. Experimental studies on the thermoelectric properties ofInTe single crystals[J]. Crystal Research and Technology, 1990, 25(4): K72-K77.
[27] PARLAK M, ERCELEBI C, GÜNAL I, et al. Anisotropy of electrical resistivity and holemobility in InTe single crystals[J]. Crystal Research and Technology, 1996, 31(5): 673-678.
[28] PAL S, BOSE D, ASOKAN S, et al. Anisotropic properties of the layered semiconductor InTe[J]. Solid State Communications, 1991, 80(9): 753-756.
[29] JANA M K, PAL K, WAGHMARE U V, et al. The Origin of Ultralow Thermal Conductivity inInTe: Lone-Pair-Induced Anharmonic Rattling[J]. Angewandte Chemie, 2016, 128(27): 7923-7927.
[30] PANS,LIUH,LIZ,etal. EnhancementofthethermoelectricperformanceofInTeviaintroduc-ing Cd dopant and regulating the annealing time[J]. Journal of Alloys and Compounds, 2020,813: 152210.
[31] ZHU H, ZHANG B, WANG G, et al. Promoted high temperature carrier mobility and thermoelectric performance of InTe enabled by altering scattering mechanism[J]. Journal of MaterialsChemistry A, 2019, 7(19): 11690-11698.
[32] ZHU H, WANG G, WANG G, et al. The role of electronic affinity for dopants in thermoelectric transport properties of InTe[J]. Journal of Alloys and Compounds, 2021, 869: 159224.
[33] HUANG R, HUANG Y, ZHU B, et al. Large enhancement of thermoelectric performance of InTecompound bysintering and CuInTe 2 doping[J]. Journal of Applied Physics, 2019, 126(12): 125108.
[34] MISRAS,LÉONA,LEVINSKỲP,etal. EnhancedthermoelectricperformanceofInTethroughPb doping[J]. Journal of Materials Chemistry C, 2021, 9(40): 14490-14496.
[35] 范人杰, 江先燕, 陶奇睿, 等. In 1+𝑥 Te 化合物的结构及热电性能研究[J]. 物理学报, 2021,70(13): 9.
[36] BACK S Y, CHO H, KIM Y K, et al. Enhancement of thermoelectric properties by latticesoftening and energy band gap control in Te-deficient InTe 1−𝛿 [J]. AIP Advances, 2018, 8(11):115227.
[37] BACKSY,KIMYK,CHOH,etal. Temperature-inducedLifshitztransitionandchargedensitywave in InTe 1−𝛿 thermoelectric materials[J]. ACS Applied Energy Materials, 2020, 3(4): 3628-3636.
[38] PAL S, BOSE D. Growth, characterisation and electrical anisotropy in layered chalcogenides GaTe and InTe[J]. Solid State Communications, 1996, 97(8): 725-729.
[39] KUNJOMANA A, CHANDRASEKHARAN K, TEENA M. Physical properties of vapourgrown indium monotelluride platelets[J]. Journal of Crystal Growth, 2015, 411: 81-87.
[40] MATHEW T, KUNJOMANA A G, MUNIRATHNAM K, et al. Mechanical and DielectricProperties of InTe Crystals[J]. Crystal Structure Theory and Applications, 2012, 1(03): 79.
[41] MISRA S, BARRETEAU C, CRIVELLO J C, et al. Reduced phase space of heat-carryingacoustic phonons in single-crystalline InTe[J]. Physical Review Research, 2020, 2(4): 043371.
[42] MISRA S, LEVINSKỲ P, DAUSCHER A, et al. Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performance[J]. Journal of Materials ChemistryC, 2021, 9(15): 5250-5260.
[43] ZHANG J, ROTH N, TOLBORG K, et al. Direct observation of one-dimensional disordereddiffusion channel in a chain-like thermoelectric with ultralow thermal conductivity[J]. NatureCommunications, 2021, 12(1): 1-10.
[44] 介万奇. 晶体生长原理与技术[M]. 科学出版社, 2010.
[45] BRIDGMANP. CertainPhysicalPropertiesofSingleCrystalsofTungsten,Antimony,Bismuth,Tellurium, Cadmium, Zinc, and Tin[C]//Proceedings of the American Academy of Arts andSciences: volume 60. 1925: 305-383.
[46] STOCKBARGER D C. The production of large single crystals of lithium fluoride[J]. Reviewof Scientific Instruments, 1936, 7(3): 133-136.
[47] 张克从. 晶体生长科学与技术[M]. 科学出版社, 1997.
[48] 闵乃本. 晶体生长的物理基础[M]. 上海科学技术出版社, 1982.
[49] 介万奇. Bridgman 法晶体生长技术的研究进展[J]. 人工晶体学报, 2012(S1): 12.
[50] KIM J C, PARK W J, LEE Z H, et al. Effect of steady ampoule rotation on axial segregation in vertical Bridgman growth of Terfenol-D[J]. Journal of Crystal Growth, 2003, 255(3-4): 286-292.
[51] 肖绍泽, 邵式平. 加速坩埚旋转布里奇曼法碲镉汞晶体生长[J]. 激光与红外, 1997, 27(5):301-304.
[52] RIGAKU C C. Crystal Structure Analysis Package[J]. Rigaku„ The Woodlands TX, 2007,77381.
[53] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta CrystallographicaSection C: Structural Chemistry, 2015, 71(1): 3-8.
[54] SPEK A. Single-crystal structure validation with the program PLATON[J]. Journal of AppliedCrystallography, 2003, 36(1): 7-13.
[55] KITTEL C, MCEUEN P. Introduction to Solid State Physics[M]. John Wiley & Sons, 2018.
[56] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 电子工业出版社, 2008.
[57] 苏少奎. 低温物性及测量: 一个实验技术人员的理解和经验总结[M]. 科学出版社, 2019.
[58] 姚连增. 晶体生长基础[M]. 晶体生长基础, 1995.
[59] SCHULZ-DUBOIS E. Accelerated crucible rotation: hydrodynamics and stirring effect[J].Journal of Crystal Growth, 1972, 12(2): 81-87.
[60] WU Y, LIU F, ZHANG Q, et al. Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering[J]. Journal of Materials Chemistry A, 2020, 8(17): 8455-8461.
[61] WU Y, ZHANG Q, LIU F, et al. Scattering Mechanisms and Compositional Optimization ofHigh-Performance Elemental Te as a Thermoelectric Material[J]. Advanced Electronic Mate-rials, 2020, 6(4): 2000038.
[62] DE BOOR J, MULLER E. Data analysis for Seebeck coefficient measurements[J]. Review ofScientific Instruments, 2013, 84(6): 065102.
[63] AL RAHAL AL ORABI R, GOUGEON P, GALL P, et al. X-ray characterization, electronicband structure, and thermoelectric properties of the cluster compound Ag 2 Tl 2 Mo 9 Se 1 1[J]. Inorganic Chemistry, 2014, 53(21): 11699-11709.
[64] WÖLFING B, KLOC C, TEUBNER J, et al. High performance thermoelectric Tl 9 BiTe 6 withan extremely low thermal conductivity[J]. Physical Review Letters, 2001, 86(19): 4350.
[65] KUROSAKI K, KOSUGA A, MUTA H, et al. Ag 9 TlTe 5 : a high-performance thermoelectricbulk material with extremely low thermal conductivity[J]. Applied Physics Letters, 2005, 87(6): 061919.
[66] IOFFE A, REGEL A. Non-crystalline, amorphous and liquid electronic semiconductors[J].Progress in Semiconductors, 1960, 4(89): 237-291.
[67] CAHILLDG,WATSONSK,POHLRO. Lowerlimittothethermalconductivityofdisorderedcrystals[J]. Physical Review B, 1992, 46(10): 6131.
[68] ZHIWEI, CHEN, XINYUE, et al. Rationalizing phonon dispersion for lattice thermal conduc-tivity of solids[J]. National Science Review, 2018, v.5(06): 110-116.
[69] AGNE M T, HANUS R, SNYDER G J. Minimum thermal conductivity in the context ofdiffuson-mediated thermal transport[J]. Energy & Environmental Science, 2018, 11(3): 609-616.
[70] 彭坤岭. 能带工程改性 P 型 SnSe 1−𝑥 S 𝑥 (0≤x≤0.5) 单晶材料热电性能[D]. 重庆大学, 2018.
[71] PENG K, ZHANG B, HONG W, et al. Ultra-high average figure of merit in synergistic bandengineered Sn 𝑥 Na 1−𝑥 Se 0.9 S 0.1 single crystals[J]. Materials Today, 2017, 21(5).
[72] KAIBE H, TANAKA Y, SAKATA M, et al. Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi 2 Te 3 single crystal with the composition of a useful thermoelectriccooling material[J]. Journal of Physics and Chemistry of Solids, 1989, 50(9): 945-950.
[73] NASSARYM,SHABANH,EL-SADEKM. SemiconductorparametersofBi 2 Te 3 singlecrystal[J]. Materials Chemistry and Physics, 2009, 113(1): 385-388.
[74] MALE J, AGNE M T, GOYAL A, et al. The importance of phase equilibrium for doping effi-ciency: iodine doped PbTe[J]. Materials Horizons, 2019, 6(7): 1444-1453.
[75] BREBRICK R, GUBNER E. Composition stability limits of PbTe. II[J]. The Journal of Chem-ical Physics, 1962, 36(5): 1283-1289.
[76] IBRAHIM D, MISRA S, MIGOT S, et al. Transport properties of polycrystalline SnTe prepared by saturation annealing[J]. RSC Advances, 2020, 10(10): 5996-6005.
[77] HEWES C R, ADLER M S, SENTURIA S D. Annealing studies of PbTe and Pb 1−𝑥 Sn 𝑥 Te[J].Journal of Applied Physics, 1973, 44(3): 1327-1332.
[78] KIM D H, KWON I H, KIM C, et al. Tellurium-evaporation-annealing for p-type bismuth–antimony–telluride thermoelectric materials[J]. Journal of Alloys and Compounds, 2013, 548:126-132.
[79] WOOD M, KUO J J, IMASATO K, et al. Improvement of Low-Temperature zT in a Mg 3 Sb 2 –Mg 3 Bi 2 Solid Solution via Mg-Vapor Annealing[J]. Advanced Materials, 2019, 31(35):1902337.
[80] IBRAHIM D, CANDOLFI C, MIGOT S, et al. Comprehensive study of the low-temperaturetransport properties of polycrystalline Sn 1+𝑥 Te (x= 0 and 0.03)[J]. Physical Review Materials,2019, 3(8): 085404.
[81] JAWORSKI C M, NIELSEN M D, WANG H, et al. Valence-band structure of highly efficientp-type thermoelectric PbTe-PbS alloys[J]. Physical Review B, 2013, 87(4): 045203.
[82] ZELLER R, POHL R. Thermal conductivity and specific heat of noncrystalline solids[J]. Phys-ical Review B, 1971, 4(6): 2029.
[83] BEEKMAN M, CAHILL D G. Inorganic crystals with glass-like and ultralow thermal conduc-tivities[J]. Crystal Research and Technology, 2017, 52(10): 1700114.
[84] CHRISTENSEN S, SCHMØKEL M S, BORUP K A, et al. “Glass-like”thermal conductiv-ity gradually induced in thermoelectric Sr 8 Ga 16 Ge 30 clathrate by off-centered guest atoms[J]. Journal of Applied Physics, 2016, 119(18): 185102.
[85] MUKHOPADHYAY S, PARKER D S, SALES B C, et al. Two-channel model for ultralowthermal conductivity of crystalline Tl 3 VSe 4 [J]. Science, 2018, 360(6396): 1455-1458.
[86] SIMONCELLI M, MARZARI N, MAURI F. Unified theory of thermal transport in crystals andglasses[J]. Nature Physics, 2019, 15(8): 809-813.
[87] PEIERLS R, PEIERLS R E. Quantum theory of solids[M]. Oxford University Press, 1955.
[88] ROSSNAGEL K. On the origin of charge-density waves in select layered transition-metaldichalcogenides[J]. Journal of Physics: Condensed Matter, 2011, 23(21): 213001.
[89] ZHU X, GUO J, ZHANG J, et al. Misconceptions associated with the origin of charge density waves[J]. Advances in Physics X, 2017, 2(3): 622-640.
[90] UGEDA M M, BRADLEY A J, ZHANG Y, et al. Characterization of collective ground statesin single-layer NbSe 2 [J]. Nature Physics, 2016, 12(1): 92-97.
[91] SIPOS B, KUSMARTSEVA A F, AKRAP A, et al. From Mott state to superconductivity in1T-TaS 2 [J]. Nature Materials, 2008, 7(12): 960-965.
[92] ZAITSEV-ZOTOV S, REMENYI G, MONCEAU P. Strong-Pinning Effects in Low-Temperature Creep: Charge-Density Waves in TaS 3 [J]. Physical Review Letters, 1997, 78(6):1098.
[93] GRÜNER G. The dynamics of charge-density waves[J]. Reviews of Modern Physics, 1988, 60(4): 1129.
[94] ADELMAN T, ZAITSEV-ZOTOV S, THORNE R. Field-effect modulation of charge-density-wave transport in NbSe 3 and TaS 3 [J]. Physical Review Letters, 1995, 74(26): 5264.
[95] WILSON J, DI SALVO F, MAHAJAN S. Charge-density waves in metallic, layered, transition-metal dichalcogenides[J]. Physical Review Letters, 1974, 32(16): 882.
[96] MULAZZI M, CHAINANI A, KATAYAMA N, et al. Absence of nesting in the charge-density-wave system 1T-VS 2 as seen by photoelectron spectroscopy[J]. Physical Review B, 2010, 82(7): 075130.
[97] MONNEY C, BATTAGLIA C, CERCELLIER H, et al. Exciton Condensation Driving thePeriodic Lattice Distortion of 1T-TiSe 2 [J]. Physical Review Letters, 2011, 106(10): 106404.
[98] DUONG D L, RYU G, HOYER A, et al. Correction to Raman Characterization of the ChargeDensity Wave Phase of 1T-TiSe 2 : From Bulk to Atomically Thin Layers[J]. ACS Nano, 2017,11(2): 2304-2304.
[99] KIM J H, RHYEE J S, KWON Y S. Magnon gap formation and charge density wave effecton thermoelectric properties in the SmNiC 2 compound[J]. Physical Review B, 2012, 86(23):235101.
[100] GLEASON S, GIM Y, BYRUM T, et al. Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in ZrTe 3 : Raman scattering studies[J]. Physical Review B, 2015, 91(15): 155124.
[101] WANG H, CHEN Y, DUCHAMP M, et al. Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe 2 [J]. Advanced Materials, 2018, 30(8): 1704382.
[102] GOLI P, KHAN J, WICKRAMARATNE D, et al. Charge density waves in exfoliated films ofvan der Waals materials: evolution of Raman spectrum in TiSe 2 [J]. Nano Letters, 2012, 12(11):5941-5945.
[103] TSANG J, SMITH JR J, SHAFER M, et al. Raman spectroscopy of the charge-density-wavestate in 1T-and 2H-TaSe 2 [J]. Physical Review B, 1977, 16(10): 4239.
[104] NIZAMETDINOVA M. Raman spectrum of InTe and TlSe single crystals[J]. Physica StatusSolidi. B, Basic Research, 1980, 97(1): K9-K12.
[105] RAJAJIV,PALK,SARMASC,etal. Pressure induced band inversion, electronic and structuralphase transitions in InTe: A combined experimental and theoretical study[J]. Physical ReviewB, 2018, 97(15): 155158.
修改评论