中文版 | English
题名

InTe 晶体电热输运性能的研究

其他题名
THERMOELECTRIC TRANSPORT PROPERTIES OF INTE CRYSTAL
姓名
姓名拼音
LIN Peijian
学号
11930040
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
何佳清
导师单位
物理系
论文答辩日期
2022-05-17
论文提交日期
2022-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       热电材料是一种能够实现电能与热能直接相互转化的材料,其在新能源领域中扮演着重要角色。InTe近年来因其具有极低的晶格热导率而受到广泛的关注,但其研究主要集中在对多晶样品的掺杂调控和热电性能优化方面,而针对InTe 强各向异性的本征电热输运性能和机理研究却十分稀少 。因此,我们对InTe单晶生长工艺和单晶电热输运特性展开系统的研究,为利用各向异性提升其热电性能提供理论依据。

       通过布里奇曼法成功生长大尺寸高质量的 InTe 单晶,首次基于单晶进行了全温度段的热电各向异性的完整表征。发现其[110]方向在全温度段均保持着高电导率、低热导率的各向异性。通过第一性原理计算,我们发现其电学各向异性是由价带顶不对称的能带结构导致的有效质量各向异性所引起的;声子色散谱的计算表明其群速度以及格林奈森常数存在各向异性,[110] 方向的低群速度以及高格林奈森常数导致 [110] 方向具有比[001] 方向更低的热导率。

       通过单晶不同部位性能测试发现,单晶生长方向存在In1+空位梯度并导致单晶不同位置载流子浓度存在差别,进而引起单晶顶部和底部的热电性能存在明显的差异。利用In 蒸汽退火处理,可以有效改善In1+空位分布不均的现象,实现晶体载流子浓度的可控调节,使单晶底部与顶部热电性能趋于一致。经过In蒸汽退火后,InTe[110]方向最高zT值从773 K转移到600 K,平均zT值得以提升40%并最终达到0.7,是目前InTe体系中最高的平均zT值。    

        低温下InTe 晶体电输运存在对载流子浓度的依赖关系,较高载流子浓度时(~6.6×1019 cm-3)呈现金属导电特性,较低载流子浓度(~1.1×1019 cm-3)时则会呈现出类电荷密度波转变的导电特性。变温PXRD、ARPES 以及 Raman光谱的分析显示,在不同温度下,两种具有不同导电行为的样品的结构、能带以及声子振动模式并无明显区别,表明其电阻异常行为与电荷密度波关联性不大,具体原因还需进一步分析。

其他摘要

Thermoelectric(TE) material is a kind of material that can realize the direct mutual conversion between electricity and thermal energy, which plays an essential role in energy. InTe has received extensive attention in recent years due to its extremely low lattice thermal conductivity. Moreover, the research interest was mainly focused on the TE performance optimization of polycrystalline samples by doping. However, the study on its intrinsic anisotropic electrical and thermal transport properties and the mechanism is rare. Therefore, we systematically investigated the growth process and the electrical and thermal transport characteristics of InTe single crystal, which can provide a theoretical basis for using transport anisotropy to improve its TE performance.

Large-scale and high-quality InTe single crystals were successfully grown by the Bridgman method. The TE anisotropy of the whole temperature range was fully characterized for the first time based on single crystals. Its [110] direction maintains high electrical conductivity and low thermal conductivity in the whole temperature range. Based on the first-principles calculation, we found that the reason for its electrical anisotropy is the asymmetric energy band structure at the valence band maximum, resulting in different effective masses in two directions. The calculation of the phonon dispersion spectrum shows that the group velocity and the Gruneisen parameter are also anisotropic. The low group velocity and high Gruneisen parameter in the [110] direction result in lower thermal conductivity than in the [001] direction.

Through the performance test of different parts of the single crystal, it is found that there is a gradient of In1+  vacancy concentration in the growth direction of the single crystal, which leads to differences in the carrier concentration at different positions of the single crystal.
 Therefore, there is a noticeable TE properties difference between the top and bottom sides of the crystal. The use of In steam annealing treatment can effectively improve the heterogeneous distribution of In1+ vacancies, and realize the controllable adjustment of the carrier concentration, therefore making TE performance of the bottom and top side samples tend to be consistent. After In steam annealing, the highest zT in the [110] direction shifted from 773 K to 600 K, and the average zT increased by 40% and finally reached 0.7, the highest average zT in the current InTe system.

The electrical transport of InTe crystal at low temperature is dependent on the carrier concentration. The crystal with a higher carrier concentration(6.6×1019 cm-3) exhibits metal-like conductivity, and the crystal with a lower carrier concentration(1.1×1019 cm-3)  manifests a charge density wave (CDW)-like conductive behavior. Using temperature-variable PXRD, ARPES, and Raman spectroscopy analysis, we found no apparent difference in the structures, energy bands, and phonon vibration modes between two different conductive behaviors samples at varying temperatures. These results indicate that their anomalous resistance behaviors were independent of charge density waves(CDW).

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] HE J, TRITT T M. Advances in thermoelectric materials research: Looking back and movingforward[J]. Science, 2017, 357(6358): eaak9997.
[2] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: from materials and structuresto devices[J]. Chemical Reviews, 2020, 120(15): 7399-7515.
[3] SLACK G, ROWE D. CRC Thermoelectrics Handbook[M]. CRC Press, Boca Raton, FL, 1995.
[4] TIE-JUN Z, et al. Recent advances in thermoelectric materials and devices[J]. Journal ofInorganic Materials, 2019, 34(3): 233.
[5] ZHU B, LIU X, WANG Q, et al. Realizing record high performance in n-type Bi 2 Te 3 -basedthermoelectric materials[J]. Energy & Environmental Science, 2020, 13(7): 2106-2114.
[6] POUDELB, HAOQ, MA Y,et al. High-thermoelectric performance of nanostructured bismuthantimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[7] PAN Y, LI J F. Thermoelectric performance enhancement in n-type Bi 2 (TeSe) 3 alloys owing tonanoscale inhomogeneity combined with a spark plasma-textured microstructure[J]. NPG AsiaMaterials, 2016, 8(6): e275-e275.
[8] BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416): 414-418.
[9] WU H, ZHAO L D, ZHENG F, et al. Broad temperature plateau for thermoelectric figure ofmerit ZT> 2 in phase-separated PbTe 0.7 S 0.3 [J]. Nature Communications, 2014, 5(1): 1-9.
[10] FU L, YIN M, WU D, et al. Large enhancement of thermoelectric properties in n-type PbTe viadual-site point defects[J]. Energy & Environmental Science, 2017, 10(9): 2030-2040.
[11] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance inhole-doped single-crystal SnSe[J]. Science, 2016, 351(6269): 141-144.
[12] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390): 778-783.
[13] NUNNA R, QIU P, YIN M, et al. Ultrahigh thermoelectric performance in Cu 2 Se-based hybrid materials with highly dispersed molecular CNTs[J]. Energy & Environmental Science, 2017,10(9): 1928-1935.
[14] ROYCHOWDHURY S, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to highthermoelectric performance in AgSbTe 2 [J]. Science, 2021, 371(6530): 722-727.
[15] DR., T., J., et al. Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz[J]. Annalen der Physik, 1826, 82(1): 1-20.
[16] PELTIER J C A. Nouvelles expériences sur la caloricité des courans électriques[J]. Annales de Chimie et de Physique, 1834, 56: 371-386.
[17] THOMSON W. On a Mechanical Theory of Thermoelectric Currents.[J]. Proceedings of the Royal Society of Edinburgh, 1857, 3: 91-98.
[18] THOMSON, W. Dynamical Theory of Heat, Part VI. continued. A Mechanical Theory of Thermoelectric Currents in Crystalline Solids.[J]. Proceedings of the Royal Society of Edinburgh,1857, 3: 255-256.
[19] 陈立东, 刘睿恒, 史迅. 热电材料与器件[M]. 科学出版社, 2018.
[20] ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectricfigure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[21] SASSI S, CANDOLFI C, VANEY J B, et al. Assessment of the thermoelectric performance of polycrystalline p-type SnSe[J]. Applied Physics Letters, 2014, 104(21): 212105.
[22] CHEN C L, WANG H, CHEN Y Y, et al. Thermoelectric properties of p-type polycrystallineSnSe doped with Ag[J]. Journal of Materials Chemistry A, 2014, 2(29): 11171-11176.
[23] CHEN S, CAI K, ZHAO W. The effect of Te doping on the electronic structure and thermo-electric properties of SnSe[J]. Physica B: Condensed Matter, 2012, 407(21): 4154-4159.
[24] IMASATO K, FU C, PAN Y, et al. Metallic n-Type Mg 3 Sb 2 Single Crystals Demonstrate the Absence of Ionized Impurity Scattering and Enhanced Thermoelectric Performance[J]. Ad-vanced Materials, 2020, 32(16): 1908218.
[25] PAN Y, YAO M, HONG X, et al. Mg 3 (Bi, Sb) 2 single crystals towards high thermoelectricperformance[J]. Energy & Environmental Science, 2020, 13(6): 1717-1724.
[26] NAGAT A, GAMAL G, BELAL A. Experimental studies on the thermoelectric properties ofInTe single crystals[J]. Crystal Research and Technology, 1990, 25(4): K72-K77.
[27] PARLAK M, ERCELEBI C, GÜNAL I, et al. Anisotropy of electrical resistivity and holemobility in InTe single crystals[J]. Crystal Research and Technology, 1996, 31(5): 673-678.
[28] PAL S, BOSE D, ASOKAN S, et al. Anisotropic properties of the layered semiconductor InTe[J]. Solid State Communications, 1991, 80(9): 753-756.
[29] JANA M K, PAL K, WAGHMARE U V, et al. The Origin of Ultralow Thermal Conductivity inInTe: Lone-Pair-Induced Anharmonic Rattling[J]. Angewandte Chemie, 2016, 128(27): 7923-7927.
[30] PANS,LIUH,LIZ,etal. EnhancementofthethermoelectricperformanceofInTeviaintroduc-ing Cd dopant and regulating the annealing time[J]. Journal of Alloys and Compounds, 2020,813: 152210.
[31] ZHU H, ZHANG B, WANG G, et al. Promoted high temperature carrier mobility and thermoelectric performance of InTe enabled by altering scattering mechanism[J]. Journal of MaterialsChemistry A, 2019, 7(19): 11690-11698.
[32] ZHU H, WANG G, WANG G, et al. The role of electronic affinity for dopants in thermoelectric transport properties of InTe[J]. Journal of Alloys and Compounds, 2021, 869: 159224.
[33] HUANG R, HUANG Y, ZHU B, et al. Large enhancement of thermoelectric performance of InTecompound bysintering and CuInTe 2 doping[J]. Journal of Applied Physics, 2019, 126(12): 125108.
[34] MISRAS,LÉONA,LEVINSKỲP,etal. EnhancedthermoelectricperformanceofInTethroughPb doping[J]. Journal of Materials Chemistry C, 2021, 9(40): 14490-14496.
[35] 范人杰, 江先燕, 陶奇睿, 等. In 1+𝑥 Te 化合物的结构及热电性能研究[J]. 物理学报, 2021,70(13): 9.
[36] BACK S Y, CHO H, KIM Y K, et al. Enhancement of thermoelectric properties by latticesoftening and energy band gap control in Te-deficient InTe 1−𝛿 [J]. AIP Advances, 2018, 8(11):115227.
[37] BACKSY,KIMYK,CHOH,etal. Temperature-inducedLifshitztransitionandchargedensitywave in InTe 1−𝛿 thermoelectric materials[J]. ACS Applied Energy Materials, 2020, 3(4): 3628-3636.
[38] PAL S, BOSE D. Growth, characterisation and electrical anisotropy in layered chalcogenides GaTe and InTe[J]. Solid State Communications, 1996, 97(8): 725-729.
[39] KUNJOMANA A, CHANDRASEKHARAN K, TEENA M. Physical properties of vapourgrown indium monotelluride platelets[J]. Journal of Crystal Growth, 2015, 411: 81-87.
[40] MATHEW T, KUNJOMANA A G, MUNIRATHNAM K, et al. Mechanical and DielectricProperties of InTe Crystals[J]. Crystal Structure Theory and Applications, 2012, 1(03): 79.
[41] MISRA S, BARRETEAU C, CRIVELLO J C, et al. Reduced phase space of heat-carryingacoustic phonons in single-crystalline InTe[J]. Physical Review Research, 2020, 2(4): 043371.
[42] MISRA S, LEVINSKỲ P, DAUSCHER A, et al. Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performance[J]. Journal of Materials ChemistryC, 2021, 9(15): 5250-5260.
[43] ZHANG J, ROTH N, TOLBORG K, et al. Direct observation of one-dimensional disordereddiffusion channel in a chain-like thermoelectric with ultralow thermal conductivity[J]. NatureCommunications, 2021, 12(1): 1-10.
[44] 介万奇. 晶体生长原理与技术[M]. 科学出版社, 2010.
[45] BRIDGMANP. CertainPhysicalPropertiesofSingleCrystalsofTungsten,Antimony,Bismuth,Tellurium, Cadmium, Zinc, and Tin[C]//Proceedings of the American Academy of Arts andSciences: volume 60. 1925: 305-383.
[46] STOCKBARGER D C. The production of large single crystals of lithium fluoride[J]. Reviewof Scientific Instruments, 1936, 7(3): 133-136.
[47] 张克从. 晶体生长科学与技术[M]. 科学出版社, 1997.
[48] 闵乃本. 晶体生长的物理基础[M]. 上海科学技术出版社, 1982.
[49] 介万奇. Bridgman 法晶体生长技术的研究进展[J]. 人工晶体学报, 2012(S1): 12.
[50] KIM J C, PARK W J, LEE Z H, et al. Effect of steady ampoule rotation on axial segregation in vertical Bridgman growth of Terfenol-D[J]. Journal of Crystal Growth, 2003, 255(3-4): 286-292.
[51] 肖绍泽, 邵式平. 加速坩埚旋转布里奇曼法碲镉汞晶体生长[J]. 激光与红外, 1997, 27(5):301-304.
[52] RIGAKU C C. Crystal Structure Analysis Package[J]. Rigaku„ The Woodlands TX, 2007,77381.
[53] SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta CrystallographicaSection C: Structural Chemistry, 2015, 71(1): 3-8.
[54] SPEK A. Single-crystal structure validation with the program PLATON[J]. Journal of AppliedCrystallography, 2003, 36(1): 7-13.
[55] KITTEL C, MCEUEN P. Introduction to Solid State Physics[M]. John Wiley & Sons, 2018.
[56] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 电子工业出版社, 2008.
[57] 苏少奎. 低温物性及测量: 一个实验技术人员的理解和经验总结[M]. 科学出版社, 2019.
[58] 姚连增. 晶体生长基础[M]. 晶体生长基础, 1995.
[59] SCHULZ-DUBOIS E. Accelerated crucible rotation: hydrodynamics and stirring effect[J].Journal of Crystal Growth, 1972, 12(2): 81-87.
[60] WU Y, LIU F, ZHANG Q, et al. Enhancing the average thermoelectric figure of merit of elemental Te by suppressing grain boundary scattering[J]. Journal of Materials Chemistry A, 2020, 8(17): 8455-8461.
[61] WU Y, ZHANG Q, LIU F, et al. Scattering Mechanisms and Compositional Optimization ofHigh-Performance Elemental Te as a Thermoelectric Material[J]. Advanced Electronic Mate-rials, 2020, 6(4): 2000038.
[62] DE BOOR J, MULLER E. Data analysis for Seebeck coefficient measurements[J]. Review ofScientific Instruments, 2013, 84(6): 065102.
[63] AL RAHAL AL ORABI R, GOUGEON P, GALL P, et al. X-ray characterization, electronicband structure, and thermoelectric properties of the cluster compound Ag 2 Tl 2 Mo 9 Se 1 1[J]. Inorganic Chemistry, 2014, 53(21): 11699-11709.
[64] WÖLFING B, KLOC C, TEUBNER J, et al. High performance thermoelectric Tl 9 BiTe 6 withan extremely low thermal conductivity[J]. Physical Review Letters, 2001, 86(19): 4350.
[65] KUROSAKI K, KOSUGA A, MUTA H, et al. Ag 9 TlTe 5 : a high-performance thermoelectricbulk material with extremely low thermal conductivity[J]. Applied Physics Letters, 2005, 87(6): 061919.
[66] IOFFE A, REGEL A. Non-crystalline, amorphous and liquid electronic semiconductors[J].Progress in Semiconductors, 1960, 4(89): 237-291.
[67] CAHILLDG,WATSONSK,POHLRO. Lowerlimittothethermalconductivityofdisorderedcrystals[J]. Physical Review B, 1992, 46(10): 6131.
[68] ZHIWEI, CHEN, XINYUE, et al. Rationalizing phonon dispersion for lattice thermal conduc-tivity of solids[J]. National Science Review, 2018, v.5(06): 110-116.
[69] AGNE M T, HANUS R, SNYDER G J. Minimum thermal conductivity in the context ofdiffuson-mediated thermal transport[J]. Energy & Environmental Science, 2018, 11(3): 609-616.
[70] 彭坤岭. 能带工程改性 P 型 SnSe 1−𝑥 S 𝑥 (0≤x≤0.5) 单晶材料热电性能[D]. 重庆大学, 2018.
[71] PENG K, ZHANG B, HONG W, et al. Ultra-high average figure of merit in synergistic bandengineered Sn 𝑥 Na 1−𝑥 Se 0.9 S 0.1 single crystals[J]. Materials Today, 2017, 21(5).
[72] KAIBE H, TANAKA Y, SAKATA M, et al. Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi 2 Te 3 single crystal with the composition of a useful thermoelectriccooling material[J]. Journal of Physics and Chemistry of Solids, 1989, 50(9): 945-950.
[73] NASSARYM,SHABANH,EL-SADEKM. SemiconductorparametersofBi 2 Te 3 singlecrystal[J]. Materials Chemistry and Physics, 2009, 113(1): 385-388.
[74] MALE J, AGNE M T, GOYAL A, et al. The importance of phase equilibrium for doping effi-ciency: iodine doped PbTe[J]. Materials Horizons, 2019, 6(7): 1444-1453.
[75] BREBRICK R, GUBNER E. Composition stability limits of PbTe. II[J]. The Journal of Chem-ical Physics, 1962, 36(5): 1283-1289.
[76] IBRAHIM D, MISRA S, MIGOT S, et al. Transport properties of polycrystalline SnTe prepared by saturation annealing[J]. RSC Advances, 2020, 10(10): 5996-6005.
[77] HEWES C R, ADLER M S, SENTURIA S D. Annealing studies of PbTe and Pb 1−𝑥 Sn 𝑥 Te[J].Journal of Applied Physics, 1973, 44(3): 1327-1332.
[78] KIM D H, KWON I H, KIM C, et al. Tellurium-evaporation-annealing for p-type bismuth–antimony–telluride thermoelectric materials[J]. Journal of Alloys and Compounds, 2013, 548:126-132.
[79] WOOD M, KUO J J, IMASATO K, et al. Improvement of Low-Temperature zT in a Mg 3 Sb 2 –Mg 3 Bi 2 Solid Solution via Mg-Vapor Annealing[J]. Advanced Materials, 2019, 31(35):1902337.
[80] IBRAHIM D, CANDOLFI C, MIGOT S, et al. Comprehensive study of the low-temperaturetransport properties of polycrystalline Sn 1+𝑥 Te (x= 0 and 0.03)[J]. Physical Review Materials,2019, 3(8): 085404.
[81] JAWORSKI C M, NIELSEN M D, WANG H, et al. Valence-band structure of highly efficientp-type thermoelectric PbTe-PbS alloys[J]. Physical Review B, 2013, 87(4): 045203.
[82] ZELLER R, POHL R. Thermal conductivity and specific heat of noncrystalline solids[J]. Phys-ical Review B, 1971, 4(6): 2029.
[83] BEEKMAN M, CAHILL D G. Inorganic crystals with glass-like and ultralow thermal conduc-tivities[J]. Crystal Research and Technology, 2017, 52(10): 1700114.
[84] CHRISTENSEN S, SCHMØKEL M S, BORUP K A, et al. “Glass-like”thermal conductiv-ity gradually induced in thermoelectric Sr 8 Ga 16 Ge 30 clathrate by off-centered guest atoms[J]. Journal of Applied Physics, 2016, 119(18): 185102.
[85] MUKHOPADHYAY S, PARKER D S, SALES B C, et al. Two-channel model for ultralowthermal conductivity of crystalline Tl 3 VSe 4 [J]. Science, 2018, 360(6396): 1455-1458.
[86] SIMONCELLI M, MARZARI N, MAURI F. Unified theory of thermal transport in crystals andglasses[J]. Nature Physics, 2019, 15(8): 809-813.
[87] PEIERLS R, PEIERLS R E. Quantum theory of solids[M]. Oxford University Press, 1955.
[88] ROSSNAGEL K. On the origin of charge-density waves in select layered transition-metaldichalcogenides[J]. Journal of Physics: Condensed Matter, 2011, 23(21): 213001.
[89] ZHU X, GUO J, ZHANG J, et al. Misconceptions associated with the origin of charge density waves[J]. Advances in Physics X, 2017, 2(3): 622-640.
[90] UGEDA M M, BRADLEY A J, ZHANG Y, et al. Characterization of collective ground statesin single-layer NbSe 2 [J]. Nature Physics, 2016, 12(1): 92-97.
[91] SIPOS B, KUSMARTSEVA A F, AKRAP A, et al. From Mott state to superconductivity in1T-TaS 2 [J]. Nature Materials, 2008, 7(12): 960-965.
[92] ZAITSEV-ZOTOV S, REMENYI G, MONCEAU P. Strong-Pinning Effects in Low-Temperature Creep: Charge-Density Waves in TaS 3 [J]. Physical Review Letters, 1997, 78(6):1098.
[93] GRÜNER G. The dynamics of charge-density waves[J]. Reviews of Modern Physics, 1988, 60(4): 1129.
[94] ADELMAN T, ZAITSEV-ZOTOV S, THORNE R. Field-effect modulation of charge-density-wave transport in NbSe 3 and TaS 3 [J]. Physical Review Letters, 1995, 74(26): 5264.
[95] WILSON J, DI SALVO F, MAHAJAN S. Charge-density waves in metallic, layered, transition-metal dichalcogenides[J]. Physical Review Letters, 1974, 32(16): 882.
[96] MULAZZI M, CHAINANI A, KATAYAMA N, et al. Absence of nesting in the charge-density-wave system 1T-VS 2 as seen by photoelectron spectroscopy[J]. Physical Review B, 2010, 82(7): 075130.
[97] MONNEY C, BATTAGLIA C, CERCELLIER H, et al. Exciton Condensation Driving thePeriodic Lattice Distortion of 1T-TiSe 2 [J]. Physical Review Letters, 2011, 106(10): 106404.
[98] DUONG D L, RYU G, HOYER A, et al. Correction to Raman Characterization of the ChargeDensity Wave Phase of 1T-TiSe 2 : From Bulk to Atomically Thin Layers[J]. ACS Nano, 2017,11(2): 2304-2304.
[99] KIM J H, RHYEE J S, KWON Y S. Magnon gap formation and charge density wave effecton thermoelectric properties in the SmNiC 2 compound[J]. Physical Review B, 2012, 86(23):235101.
[100] GLEASON S, GIM Y, BYRUM T, et al. Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in ZrTe 3 : Raman scattering studies[J]. Physical Review B, 2015, 91(15): 155124.
[101] WANG H, CHEN Y, DUCHAMP M, et al. Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe 2 [J]. Advanced Materials, 2018, 30(8): 1704382.
[102] GOLI P, KHAN J, WICKRAMARATNE D, et al. Charge density waves in exfoliated films ofvan der Waals materials: evolution of Raman spectrum in TiSe 2 [J]. Nano Letters, 2012, 12(11):5941-5945.
[103] TSANG J, SMITH JR J, SHAFER M, et al. Raman spectroscopy of the charge-density-wavestate in 1T-and 2H-TaSe 2 [J]. Physical Review B, 1977, 16(10): 4239.
[104] NIZAMETDINOVA M. Raman spectrum of InTe and TlSe single crystals[J]. Physica StatusSolidi. B, Basic Research, 1980, 97(1): K9-K12.
[105] RAJAJIV,PALK,SARMASC,etal. Pressure induced band inversion, electronic and structuralphase transitions in InTe: A combined experimental and theoretical study[J]. Physical ReviewB, 2018, 97(15): 155158.

所在学位评定分委会
物理系
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343121
专题理学院_物理系
推荐引用方式
GB/T 7714
林培坚. InTe 晶体电热输运性能的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930040-林培坚-物理系.pdf(7761KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[林培坚]的文章
百度学术
百度学术中相似的文章
[林培坚]的文章
必应学术
必应学术中相似的文章
[林培坚]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。