[1] MOORE G E. Cramming more components onto integrated circuits [Z]. McGraw-Hill New York. 1965
[2] DOKMANIĆ I, KOLUNDŽIJA M, VETTERLI M. Beyond Moore-Penrose: Sparse pseudoinverse; proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, F, 2013 [C]. IEEE. International Conference on Robotics and Automation (ICRA), 2013: 6526-6530.
[3] ARDEN W, BRILLOUëT M, COGEZ P, et al. More-than-Moore white paper [J]. Version, 2010, 2: 14.
[4] WANG Z, TANG C, SACHS R, et al. Proximity-Induced ferromagnetism in graphene revealed by the anomalous Hall effect [J]. Physical Review Letters, 2015, 114(1): 016603.
[5] YAZYEV O V, HELM L. Defect-Induced magnetism in graphene [J]. Physical Review B, 2007, 75(12): 125408.
[6] CAO T, LI Z, LOUIE S G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe [J]. Physical Review Letters, 2015, 114(23): 236602.
[7] CASTRO E V, PERES N M R, STAUBER T, et al. Low-Density ferromagnetism in biased bilayer graphene [J]. Physical Review Letters, 2008, 100(18): 186803.
[8] HUANG B, CLARK G, KLEIN D R, et al. Electrical control of 2D magnetism in bilayer CrI3 [J]. Nature Nanotechnology, 2018, 13(7): 544-548.
[9] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals [J]. Nature, 2017, 546(7657): 265-269.
[10] WANG H, XU R, LIU C, et al. Pressure-Dependent intermediate magnetic phase in thin Fe3GeTe2 flakes [J]. The Journal of Physical Chemistry Letters, 2020, 11(17): 7313-7319.
[11] BONILLA M, KOLEKAR S, MA Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates [J]. Nature Nanotechnology, 2018, 13(4): 289-293.
[12] OHARA D J, ZHU T, TROUT A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit [J]. Nano Letters, 2018, 18(5): 3125-3131.
[13] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator [J]. Nature, 2019, 576(7787): 416-422.
[14] ZHANG X, ZHANG S, JIANG Z, et al. Tunable intrinsic ferromagnetic topological phases in bulk van der Waals crystal MnSb6Te10 [J]. arXiv preprint arXiv:211104973, 2021.
[15] LIU Y, WANG L-L, ZHENG Q, et al. Site mixing for engineering magnetic topological insulators [J]. Physical Review X, 2021, 11(2): 021033.
[16] ZHANG S, XU R, LUO N, et al. Two-Dimensional magnetic materials: structures, properties and external controls [J]. Nanoscale, 2021, 13(3): 1398-1424.
[17] XIAO H, MI M-J, WANG Y-L. Recent development in two-dimensional magnetic materials and multi-field control of magnetism [J]. ACTA PHYSICA SINICA, 2021, 70(12).
[18] MCGUIRE M A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides [J]. Crystals, 2017, 7(5): 121.
[19] KIM H H, YANG B, LI S, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides [J]. Proceedings of the National Academy of Sciences, 2019, 116(23): 11131-11136.
[20] ZHONG D, SEYLER K L, LINPENG X, et al. Layer-Resolved magnetic proximity effect in van der Waals heterostructures [J]. Nature Nanotechnology, 2020, 15(3): 187-191.
[21] MCGUIRE M A, DIXIT H, COOPER V R, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3 [J]. Chemistry of Materials, 2015, 27(2): 612-620.
[22] BEDOYA-PINTO A, JI J-R, PANDEYA A K, et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer [J]. Science, 2021, 374(6567): 616-620.
[23] KANG L, YE C, ZHAO X, et al. Phase-Controllable growth of ultrathin 2D magnetic FeTe crystals [J]. Nature Communications, 2020, 11(1): 3729.
[24] COAK M J, JARVIS D M, HAMIDOV H, et al. Tuning dimensionality in van der Waals antiferromagnetic Mott insulators TMPS3 [J]. Journal of Physics: Condensed Matter, 2019, 32(12): 124003.
[25] LEE J-U, LEE S, RYOO J H, et al. Ising-Type Magnetic Ordering in atomically thin FePS3 [J]. Nano Letters, 2016, 16(12): 7433-7438.
[26] LANçON D, WALKER H C, RESSOUCHE E, et al. Magnetic structure and magnon dynamics of the quasi two-dimensional antiferromagnet FePS3 [J]. Physical Review B, 2016, 94(21): 214407.
[27] KIM K, LIM S Y, LEE J-U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 [J]. Nature Communications, 2019, 10(1): 345.
[28] KANG S, KIM K, KIM B H, et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3 [J]. Nature, 2020, 583(7818): 785-789.
[29] LI Y F, WANG W, GUO W, et al. Electronic structure of ferromagnetic semiconductor CrGeTe3 by angle-resolved photoemission spectroscopy [J]. Physical Review B, 2018, 98(12): 125127.
[30] ITO N, KIKKAWA T, BARKER J. Spin Seebeck effect in the layered ferromagnetic insulators CrSiTe3 and CrGeTe3 [J]. Physical Review B, 2019, 100(6): 060402.
[31] DENG Y, YU Y, SONG Y, et al. Gate-Tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 [J]. Nature, 2018, 563(7729): 94-99.
[32] MAY A F, OVCHINNIKOV D, ZHENG Q, et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2 [J]. ACS Nano, 2019, 13(4): 4436-4442.
[33] WANG Z, ZHANG T, DING M, et al. Electric-Field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor [J]. Nature Nanotechnology, 2018, 13(7): 554-559.
[34] JIANG S, LI L, WANG Z, et al. Controlling magnetism in 2D CrI3 by electrostatic doping [J]. Nature Nanotechnology, 2018, 13(7): 549-553.
[35] LI T, JIANG S, SIVADAS N, et al. Pressure-Controlled interlayer magnetism in atomically thin CrI3 [J]. Nature Materials, 2019, 18(12): 1303-1308.
[36] SONG T, FEI Z, YANKOWITZ M, et al. Switching 2D magnetic states via pressure tuning of layer stacking [J]. Nature Materials, 2019, 18(12): 1298-1302.
[37] LIN Z, LOHMANN M, ALI Z A, et al. Pressure-Induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6 [J]. Physical Review Materials, 2018, 2(5): 051004.
[38] FEI Z, HUANG B, MALINOWSKI P, et al. Two-Dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 [J]. Nature Materials, 2018, 17(9): 778-782.
[39] HUANG C, FENG J, WU F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors [J]. Journal of the American Chemical Society, 2018, 140(36): 11519-11525.
[40] ABRAMCHUK M, JASZEWSKI S, METZ K R, et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry [J]. Advanced Materials, 2018, 30(25): 1801325.
[41] FENG Q, TANG N, LIU F, et al. Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide [J]. ACS Nano, 2013, 7(8): 6729-6734.
[42] W, WANG Z, ZHAO X, et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation [J]. Advanced Functional Materials, 2020, 30(31): 2003057.
[43] CHUA R, YANG J, HE X, et al. Can reconstructed Se-deficient line defects in monolayer VSe2 induce magnetism? [J]. Advanced Materials, 2020, 32(24): 2000693.
[44] ZHAO X, FU D, DING Z, et al. Mo-Terminated edge reconstructions in nanoporous molybdenum disulfide film [J]. Nano letters, 2018, 18(1): 482-490.
[45] 何珂. 从磁性掺杂拓扑绝缘体到内禀磁性拓扑绝缘体——通往高温量子反常霍尔效应之路 [J]. 物理, 2020, 49(12): 828-836.
[46] ZHAO Y, LIN L, ZHOU Q, et al. Surface vacancy-induced switchable electric polarization and enhanced ferromagnetism in monolayer metal trihalides [J]. Nano Letters, 2018, 18(5): 2943-2949.
[47] CHANG C-Z, ZHANG J, FENG X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator [J]. Science, 2013, 340(6129): 167-170.
[48] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 [J]. Science, 2020, 367(6480): 895-900.
[49] GE J, LIU Y, LI J, et al. High-Chern-Number and high-temperature quantum Hall effect without Landau levels [J]. National Science Review, 2020, 7(8): 1280-1287.
[50] OTROKOV M, MENSHCHIKOVA T Y V, RUSINOV I P, et al. Magnetic extension as an efficient method for realizing the quantum anomalous hall state in topological insulators [J]. JETP Letters, 2017, 105(5): 297-302.
[51] HUAN S, ZHANG S, JIANG Z, et al. Multiple magnetic topological phases in bulk van der Waals crystal MnSb4Te7 [J]. Physical Review Letters, 2021, 126(24): 246601.
[52] ZEUGNER A, NIETSCHKE F, WOLTER A U, et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4 [J]. Chemistry of Materials, 2019, 31(8): 2795-2806.
[53] YAN J-Q, HUANG Z, WU W, et al. Vapor transport growth of MnBi2Te4 and related compounds [J]. arXiv preprint arXiv:211006034, 2021.
[54] LAI Y, KE L, YAN J, et al. Defect-Driven ferrimagnetism and hidden magnetization in MnBi2Te4 [J]. Physical Review B, 2021, 103(18): 184429.
[55] LI H, LIU S, LIU C, et al. Antiferromagnetic topological insulator MnBi2Te4: Synthesis and magnetic properties [J]. Physical Chemistry Chemical Physics, 2020, 22(2): 556-563.
[56] YUAN Y, WANG X, LI H, et al. Electronic states and mgnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy [J]. Nano Letters, 2020, 20(5): 3271-3277.
[57] HU C, DING L, GORDON K N, et al. Realization of an intrinsic ferromagnetic topological state in MnBi8Te13 [J]. Science Advances, 2020, 6(30): eaba4275.
[58] WU J, LIU F, SASASE M, et al. Natural van der Waals heterostructural single crystals with both magnetic and topological properties [J]. Science Advances, 2019, 5(11): eaax9989.
[59] TIAN S, GAO S, NIE S, et al. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states [J]. Physical Review B, 2020, 102(3): 035144.
[60] HU C, GORDON K N, LIU P, et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling [J]. Nature Communications, 2020, 11(1): 1-8.
[61] YAN J Q, LIU Y H, PARKER D S, et al. A-Type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals [J]. Physical Review Materials, 2020, 4(5): 054202.
[62] WU J, LIU F, LIU C, et al. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal [J]. Advanced Materials, 2020, 32(23): 2001815.
[63] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure [J]. Journal of Alloys and Compounds, 2019, 789: 443-450.
[64] YAN J-Q, ZHANG Q, HEITMANN T, et al. Crystal growth and magnetic structure of MnBi2Te4 [J]. Physical Review Materials, 2019, 3(6): 064202.
[65] YAN J Q, OKAMOTO S, MCGUIRE M A, et al. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4 [J]. Physical Review B, 2019, 100(10): 104409.
[66] ZHOU L, TAN Z, YAN D, et al. Topological phase transition in the layered magnetic compound MnSb2Te4: Spin-orbit coupling and interlayer coupling dependence [J]. Physical Review B, 2020, 102(8): 085114.
[67] MURAKAMI T, NAMBU Y, KORETSUNE T. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state [J]. Physical Review B, 2019, 100(19): 195103
[68] YAN D Y, YANG M, SONG P B, et al. Site mixing induced ferrimagnetism and anomalous transport properties of the Weyl semimetal candidate MnSb2Te4 [J]. Physical Review B, 2021, 103(22): 224412.
[69] LI H, LI Y, LIAN Y, et al. Glassy magnetic ground state in layered compound MnSb2Te4 [J]. Science China Materials, 2022, 65(2): 477-485
[70] WIMMER S, SáNCHEZ-BARRIGA J, KüPPERS P, et al. Mn-Rich MnSb2Te4: A topological insulator with magnetic gap closing at high Curie temperatures of 45–50 K [J]. Advanced Materials, 2021, 33(42): 2102935.
[71] ORUJLU E, ALIEV Z, AMIRASLANOV I, et al. Phase equilibria of the MnTe-Sb2Te3 system and synthesis of novel ternary layered compound–MnSb4Te7 [J]. Physics and Chemistry of Solid State, 2021, 22(1): 39-44.
[72] TOPPING C, BLUNDELL S. AC susceptibility as a probe of low-frequency magnetic dynamics [J]. Journal of Physics: Condensed Matter, 2018, 31(1): 013001.
[73] CASIMIR H, DU PRé F. Note on the thermodynamic interpretation of paramagnetic relaxation phenomena [J]. Physica, 1938, 5(6): 507-511.
[74] BALANDA M. AC susceptibility studies of phase transitions and magnetic relaxation: Conventional, molecular and low-dimensional magnets [J]. Acta Phys Pol A, 2013, 124(6): 964-976.
[75] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. Alternating current characteristics [J]. The Journal of Chemical Physics, 1941, 9(4): 341-351.
[76] ZANG Z, ZHU Y, XI M, et al. Layer-Number-Dependent antiferromagnetic and ferromagnetic behavior in MnSb2Te4 [J]. Physical Review Letters, 2022, 128(1): 017201.
[77] HU C, TANATAR M A, PROZOROV R, et al. Unusual dynamic susceptibility arising from soft ferromagnetic domains in MnBi8Te13 and Sb-doped MnBi2nTe3n+1 (n= 2, 3) [J]. Journal of Physics D: Applied Physics, 2021, 55(5): 054003.
[78] WU W, KIRYUKHIN V, NOH H J, et al. Formation of pancakelike Ising domains and giant magnetic coercivity in ferrimagnetic LuFe2O4 [J]. Physical Review Letters, 2008, 101(13): 137203.
[79] BAŁANDA M, SZYTUŁA A, GUILLOT M. Magnetic properties of RPdIn (R= Gd-Er) compounds [J]. Journal of Magnetism and Magnetic Materials, 2002, 247(3): 345-354.
[80] SMART J S. The Néel theory of ferrimagnetism [J]. American Journal of Physics, 1955, 23(6): 356-370.
[81] HU C, LIEN S-W, FENG E, et al. Tuning magnetism and band topology through antisite defects in Sb-doped MnBi4Te7 [J]. Physical Review B, 2021, 104(5): 054422.
[82] SCHMIDT F, HUBERT A. Domain observations on CoCr-layers with a digitally enhanced Kerr-microscope [J]. Journal of Magnetism and Magnetic Materials, 1986, 61(3): 307-320.
[83] HUBERT A, SCHäFER R. Domain theory [M]. Magnetic domains: the analysis of magnetic microstructures. Berlin, Heidelberg; Springer Berlin Heidelberg. 1998: 99-335.
[84] 林高庭. 尖晶石结构MnCr2O4单晶物性研究 [D]; 中国科学技术大学, 2019.
[85] CHOI J, CHOI S, CHOI J, et al. Magnetic properties of Mn‐doped Bi2Te3 and Sb2Te3 [J]. Physica Status Solidi (b), 2004, 241(7): 1541-1544.
[86] MYDOSH J A. Spin glasses: an experimental introduction [M]. CRC Press, 1993.
[87] MAJUMDAR A, OESTREICH V, WESCHENFELDER D. Deviations from Curie-Weiss law in AuMn and AgMn spin-glasses [J]. Solid State Communications, 1983, 45(10): 907-909.
[88] BAG P, BARAL P R, NATH R. Cluster spin-glass behavior and memory effect in Cr0.5Fe0.5Ga [J]. Physical Review B, 2018, 98(14): 144436.
[89] LI H, LI Y, LIAN Y-K, et al. Spin glass state in layered compound MnSb2Te4 [J]. arXiv preprint arXiv:210400898, 2021.
[90] GE W, SASS P, YAN J, et al. Direct evidence of ferromagnetism in MnSb2Te4 [J]. Physical Review B, 2021, 103: 134403.
[91] YOO J-W, PRIGODIN V, SHUM W, et al. Magnetic bistability and nucleation of magnetic bubbles in a layered 2D organic-based magnet [Fe(TCNE·-)(NCMe)2[FeCl4] [J]. Physical Review Letters, 2008, 101(19): 197206.
[92] KO W, KOLMER M, YAN J, et al. Realizing gapped surface states in the magnetic topological insulator MnBi2-xSbxTe4 [J]. Physical Review B, 2020, 102(11): 115402.
[93] KOEHLER W C. Magnetic properties of rare-earth metals and alloys [J]. Journal of Applied Physics, 1965, 36(3): 1078-1087.
修改评论