中文版 | English
题名

FOXM1 在人胚胎干细胞基因组中的结合位点研究

其他题名
IDENTIFICATION OF GENOME-WIDE BINDING SITES OF FOXM1 IN HUMAN EMBRYONIC STEM CELLS
姓名
姓名拼音
ZHANG Qing
学号
11930125
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
陈曦
导师单位
生物系
论文答辩日期
2022-04-28
论文提交日期
2022-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

作为转录因子 FOX 家族的成员, FOXM1 在细胞周期调控、细胞增殖分化、组织稳态和多种信号通路的调控等生物学过程发挥重要作用。在小鼠胚胎干细胞中发现, FOXM1可以调控细胞干性相关的转录因子 OCT4来维持小鼠胚胎干细胞的干性;同样在人类肿瘤干细胞中发现, FOXM1是 OCT4表达所必备的,表明FOXM1 在人类胚胎干细胞中具有潜在的作用。尽管近些年的研究发现, FOXM1参与胚胎干细胞的多能性和自我更新特征的维持,但是其在胚胎干细胞中的详细功能机制仍然不清楚。因此我们下载并分析了公共数据库的 FOXM1 的 ChIP-seq 数据,通过比较3种细胞系,我们发现 FOXM1 在他们中相同的结合位点非常少, 仅有 281 个, 并且 motif 预测的转录因子也并非 FOX 家族。因此我们选择染色质免疫沉淀后测序(ChIP-seq)这一应用广泛的研究 DNA-蛋白质互作的技术,在人类胚胎干细胞中进行探索。通过完善和优化在人类胚胎干细胞中的 ChIP-seq 实验流程, ChIP-seq实验结果表明,通过 FOXM1 抗体进行 ChIP-seq 在胚胎干细胞中找到的 FOXM1结合位点有限, 仅有两三百个, 不足以挖掘到有效的新的信息。由此,我们利用CRISPR-Cas9 技术,在 FOXM1 基因 3’末端整合了表位标签 FLAG 序列和新霉素
基因序列,成功构建了可以表达带 FLAG 标签的 FOXM1 蛋白和可以使用新霉素进行筛选的 pETChH1 细胞系,用于后续进一步研究。
 

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] WEIGEL D, JüRGENS G, KüTTNER F, et al. The homeotic gene fork head encodes a nuclearprotein and is expressed in the terminal regions of the Drosophila embryo [J]. Cell, 1989, 57(4) :645-58.
[2] LAI E, PREZIOSO V R, SMITH E, et al. HNF-3A, a hepatocyte-enriched transcription factorof novel structure is regulated transcriptionally [J]. Genes & development, 1990, 4(8) : 1427-36.
[3] BRADNER J E, HNISZ D, YOUNG R A. Transcriptional Addiction in Cancer [J]. Cell, 2017,168(4) : 629-43.
[4] WEIGEL D, JäCKLE H. The fork head domain: a novel DNA binding motif of eukaryotictranscription factors? [J]. Cell, 1990, 63(3) : 455-6.
[5] HANNENHALLI S, KAESTNER K H. The evolution of Fox genes and their role indevelopment and disease [J]. Nature reviews Genetics, 2009, 10(4) : 233-40.
[6] CLARK K L, HALAY E D, LAI E, et al. Co-crystal structure of the HNF-3/fork head DNArecognition motif resembles histone H5 [J]. Nature, 1993, 364(6436) : 412-20.
[7] BERMAN H, HENRICK K, NAKAMURA H. Announcing the worldwide Protein Data Bank[J]. Nature structural biology, 2003, 10(12) : 980.
[8] JACKSON B C, CARPENTER C, NEBERT D W, et al. Update of human and mouse forkheadbox (FOX) gene families [J]. Human genomics, 2010, 4(5) : 345-52.
[9] MYATT S S, LAM E W. The emerging roles of forkhead box (Fox) proteins in cancer [J].Nature reviews Cancer, 2007, 7(11) : 847-59.
[10] FRIEDMAN J R, KAESTNER K H. The Foxa family of transcription factors in developmentand metabolism [J]. Cellular and molecular life sciences : CMLS, 2006, 63(19-20) : 2317-28.
[11] SEO S, FUJITA H, NAKANO A, et al. The forkhead transcription factors, Foxc1 and Foxc2,are required for arterial specification and lymphatic sprouting during vascular development [J].Developmental biology, 2006, 294(2) : 458-70.
[12] HUANG H, TINDALL D J. Dynamic FoxO transcription factors [J]. Journal of cell science,2007, 120(Pt 15) : 2479-87.
[13] FLESKENS V, VAN BOXTEL R. Forkhead Box P family members at the crossroad betweentolerance and immunity: a balancing act [J]. International reviews of immunology, 2014, 33(2) :94-109.
[14] LAISSUE P. The forkhead-box family of transcription factors: key molecular players incolorectal cancer pathogenesis [J]. Molecular cancer, 2019, 18(1) : 5.
[15] BENAYOUN B A, CABURET S, VEITIA R A. Forkhead transcription factors: key players inhealth and disease [J]. Trends in genetics : TIG, 2011, 27(6) : 224-32.
[16] WESTENDORF J M, RAO P N, GERACE L. Cloning of cDNAs for M-phase phosphoproteinsrecognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope [J].Proc Natl Acad Sci U S A, 1994, 91(2) : 714-8.
[17] YAO K M, SHA M, LU Z, et al. Molecular analysis of a novel winged helix protein, WIN.Expression pattern, DNA binding property, and alternative splicing within the DNA binding domain[J]. The Journal of biological chemistry, 1997, 272(32) : 19827-36.
[18] YE H, KELLY T F, SAMADANI U, et al. Hepatocyte nuclear factor 3/fork head homolog 11 isexpressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues [J].Molecular and cellular biology, 1997, 17(3) : 1626-41.
[19] KORVER W, ROOSE J, HEINEN K, et al. The human TRIDENT/HFH-11/FKHL16 gene:structure, localization, and promoter characterization [J]. Genomics, 1997, 46(3) : 435-42.
[20] KORVER W, ROOSE J, CLEVERS H. The winged-helix transcription factor Trident isexpressed in cycling cells [J]. Nucleic acids research, 1997, 25(9) : 1715-9.
[21] LAOUKILI J, STAHL M, MEDEMA R H. FoxM1: at the crossroads of ageing and cancer [J].Biochimica et biophysica acta, 2007, 1775(1) : 92-102.
[22] LIAO G B, LI X Z, ZENG S, et al. Regulation of the master regulator FOXM1 in cancer [J].Cell communication and signaling : CCS, 2018, 16(1) : 57.
[23] BARGER C J, BRANICK C, CHEE L, et al. Pan-Cancer Analyses Reveal Genomic Features ofFOXM1 Overexpression in Cancer [J]. Cancers (Basel) , 2019, 11(2) :
[24] ZHANG X, ZHANG L, DU Y, et al. A novel FOXM1 isoform, FOXM1D, promotes epithelialmesenchymal transition and metastasis through ROCKs activation in colorectal cancer [J]. Oncogene,2017, 36(6) : 807-19.
[25] GARTEL A L. FOXM1 in Cancer: Interactions and Vulnerabilities [J]. Cancer research, 2017,77(12) : 3135-9.
[26] KORVER W, ROOSE J, WILSON A, et al. The winged-helix transcription factor Trident isexpressed in actively dividing lymphocytes [J]. Immunobiology, 1997, 198(1-3) : 157-61.
[27] AHN J I, LEE K H, SHIN D M, et al. Temporal expression changes during differentiation ofneural stem cells derived from mouse embryonic stem cell [J]. Journal of cellular biochemistry, 2004,93(3) : 563-78.
[28] KRUPCZAK-HOLLIS K, WANG X, KALINICHENKO V V, et al. The mouse Forkhead Boxm1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ductsand vessels during liver morphogenesis [J]. Developmental biology, 2004, 276(1) : 74-88.
[29] KIM I M, RAMAKRISHNA S, GUSAROVA G A, et al. The forkhead box m1 transcriptionfactor is essential for embryonic development of pulmonary vasculature [J]. The Journal of biologicalchemistry, 2005, 280(23) : 22278-86.
[30] RAMAKRISHNA S, KIM I M, PETROVIC V, et al. Myocardium defects and ventricularhypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor [J]. Developmentaldynamics : an official publication of the American Association of Anatomists, 2007, 236(4) : 1000-13.
[31] KALINICHENKO V V, LIM L, SHIN B, et al. Differential expression of forkhead boxtranscription factors following butylated hydroxytoluene lung injury [J]. American journal ofphysiology Lung cellular and molecular physiology, 2001, 280(4) : L695-704.
[32] ZU G, GUO J, ZHOU T, et al. The transcription factor FoxM1 activates Nurr1 to promoteintestinal regeneration after ischemia/reperfusion injury [J]. Experimental & molecular medicine,2019, 51(11) : 1-12.
[33] CHANG-PANESSO M, KADYROV F F, LALLI M, et al. FOXM1 drives proximal tubuleproliferation during repair from acute ischemic kidney injury [J]. The Journal of clinical investigation,2019, 129(12) : 5501-17.
[34] CHEN Z, LI L, XU S, et al. A Cdh1-FoxM1-Apc axis controls muscle development andregeneration [J]. Cell death & disease, 2020, 11(3) : 180.
[35] LITTLER D R, ALVAREZ-FERNáNDEZ M, STEIN A, et al. Structure of the FoxM1 DNArecognition domain bound to a promoter sequence [J]. Nucleic acids research, 2010, 38(13) : 4527-38.
[36] PARK H J, WANG Z, COSTA R H, et al. An N-terminal inhibitory domain modulates activityof FoxM1 during cell cycle [J]. Oncogene, 2008, 27(12) : 1696-704.
[37] GOLSON M L, KAESTNER K H. Fox transcription factors: from development to disease [J].Development (Cambridge, England) , 2016, 143(24) : 4558-70.
[38] CHEN X, MüLLER G A, QUAAS M, et al. The forkhead transcription factor FOXM1 controlscell cycle-dependent gene expression through an atypical chromatin binding mechanism [J].Molecular and cellular biology, 2013, 33(2) : 227-36.
[39] INESS A N, LITOVCHICK L. MuvB: A Key to Cell Cycle Control in Ovarian Cancer [J].Frontiers in oncology, 2018, 8(223.
[40] SANDERS D A, GORMALLY M V, MARSICO G, et al. FOXM1 binds directly to nonconsensus sequences in the human genome [J]. Genome biology, 2015, 16(1) : 130.
[41] KANG K, CHOI Y, KIM H H, et al. Predicting FOXM1-Mediated Gene Regulation through theAnalysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines [J]. International journal of molecular sciences, 2020, 21(17) :
[42] MULLEN D J, YAN C, KANG D S, et al. TENET 2.0: Identification of key transcriptionalregulators and enhancers in lung adenocarcinoma [J]. PLoS genetics, 2020, 16(9) : e1009023.
[43] YE H, HOLTERMAN A X, YOO K W, et al. Premature expression of the winged helixtranscription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase[J]. Molecular and cellular biology, 1999, 19(12) : 8570-80.
[44] WANG X, ARCECI A, BIRD K, et al. VprBP/DCAF1 Regulates the Degradation andNonproteolytic Activation of the Cell Cycle Transcription Factor FoxM1 [J]. Molecular and cellularbiology, 2017, 37(13) :
[45] JEFFERY J M, KALIMUTHO M, JOHANSSON P, et al. FBXO31 protects against genomicinstability by capping FOXM1 levels at the G2/M transition [J]. Oncogene, 2017, 36(7) : 1012-22.
[46] ANDERS L, KE N, HYDBRING P, et al. A systematic screen for CDK4/6 substrates linksFOXM1 phosphorylation to senescence suppression in cancer cells [J]. Cancer cell, 2011, 20(5) :620-34.
[47] LüSCHER-FIRZLAFF J M, LILISCHKIS R, LüSCHER B. Regulation of the transcriptionfactor FOXM1c by Cyclin E/CDK2 [J]. FEBS letters, 2006, 580(7) : 1716-22.
[48] CHEN Y J, DOMINGUEZ-BRAUER C, WANG Z, et al. A conserved phosphorylation sitewithin the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1 [J]. The Journalof biological chemistry, 2009, 284(44) : 30695-707.
[49] MAJOR M L, LEPE R, COSTA R H. Forkhead box M1B transcriptional activity requiresbinding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBPcoactivators [J]. Molecular and cellular biology, 2004, 24(7) : 2649-61.
[50] ALVAREZ-FERNáNDEZ M, HALIM V A, APRELIA M, et al. Protein phosphatase 2A (B55α ) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclinA/cyclin-dependent kinase-mediated phosphorylation [J]. The Journal of biological chemistry, 2011,286(38) : 33029-36.
[51] LAOUKILI J, ALVAREZ M, MEIJER L A, et al. Activation of FoxM1 during G2 requirescyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain [J]. Molecular andcellular biology, 2008, 28(9) : 3076-87.
[52] TAN Y, RAYCHAUDHURI P, COSTA R H. Chk2 mediates stabilization of the FoxM1transcription factor to stimulate expression of DNA repair genes [J]. Molecular and cellular biology,2007, 27(3) : 1007-16.
[53] MA R Y, TONG T H, CHEUNG A M, et al. Raf/MEK/MAPK signaling stimulates the nucleartranslocation and transactivating activity of FOXM1c [J]. Journal of cell science, 2005, 118(Pt 4) :795-806.
[54] FU Z, MALUREANU L, HUANG J, et al. Plk1-dependent phosphorylation of FoxM1 regulatesa transcriptional programme required for mitotic progression [J]. Nat Cell Biol, 2008, 10(9) : 1076-82.
[55] PARK H J, COSTA R H, LAU L F, et al. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into Sphase [J]. Molecular and cellular biology, 2008, 28(17) : 5162-71.
[56] MARCEAU A H, BRISON C M, NERLI S, et al. An order-to-disorder structural switchactivates the FoxM1 transcription factor [J]. Elife, 2019, 8(e46131.
[57] WANG I C, CHEN Y-J, HUGHES D, et al. Forkhead box M1 regulates the transcriptionalnetwork of genes essential for mitotic progression and genes encoding the SCF ( Skp2-Cks1)ubiquitin ligase [J]. Molecular and cellular biology, 2005, 25(24) : 10875-94.
[58] LAOUKILI J, KOOISTRA M R, BRáS A, et al. FoxM1 is required for execution of the mitoticprogramme and chromosome stability [J]. Nat Cell Biol, 2005, 7(2) : 126-36.
[59] WONSEY D R, FOLLETTIE M T. Loss of the forkhead transcription factor FoxM1 causescentrosome amplification and mitotic catastrophe [J]. Cancer research, 2005, 65(12) : 5181-9.
[60] SCHIMMEL J, EIFLER K, SIGURðSSON J O, et al. Uncovering SUMOylation dynamicsduring cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein [J]. Molecular cell,2014, 53(6) : 1053-66.
[61] WANG C M, LIU R, WANG L, et al. SUMOylation of FOXM1B alters its transcriptionalactivity on regulation of MiR-200 family and JNK1 in MCF7 human breast cancer cells [J].International journal of molecular sciences, 2014, 15(6) : 10233-51.
[62] MYATT S S, KONGSEMA M, MAN C W, et al. SUMOylation inhibits FOXM1 activity anddelays mitotic transition [J]. Oncogene, 2014, 33(34) : 4316-29.
[63] JAISWAL N, JOHN R, CHAND V, et al. Oncogenic Human Papillomavirus 16E7 modulatesSUMOylation of FoxM1b [J]. The international journal of biochemistry & cell biology, 2015, 58(28-36.
[64] ZHANG J, YUAN C, WU J, et al. Polo-like kinase 1-mediated phosphorylation of Forkhead boxprotein M1b antagonizes its SUMOylation and facilitates its mitotic function [J]. The Journal ofbiological chemistry, 2015, 290(6) : 3708-19.
[65] LV C, ZHAO G, SUN X, et al. Acetylation of FOXM1 is essential for its transactivation andtumor growth stimulation [J]. Oncotarget, 2016, 7(37) : 60366-82.
[66] COHN O, FELDMAN M, WEIL L, et al. Chromatin associated SETD3 negatively regulatesVEGF expression [J]. Scientific reports, 2016, 6(37115.
[67] THOMSON J A, ITSKOVITZ-ELDOR J, SHAPIRO S S, et al. Embryonic stem cell linesderived from human blastocysts [J]. Science (New York, NY) , 1998, 282(5391) : 1145-7.
[68] YOUNG R A. Control of the embryonic stem cell state [J]. Cell, 2011, 144(6) : 940-54.
[69] BECKER K A, GHULE P N, THERRIEN J A, et al. Self-renewal of human embryonic stemcells is supported by a shortened G1 cell cycle phase [J]. Journal of cellular physiology, 2006, 209(3) : 883-93.
[70] CHAMBERS I, COLBY D, ROBERTSON M, et al. Functional expression cloning of Nanog, apluripotency sustaining factor in embryonic stem cells [J]. Cell, 2003, 113(5) : 643-55.
[71] HEINS N, ENGLUND M C, SJöBLOM C, et al. Derivation, characterization, and differentiationof human embryonic stem cells [J]. Stem cells (Dayton, Ohio) , 2004, 22(3) : 367-76.
[72] NICHOLS J, ZEVNIK B, ANASTASSIADIS K, et al. Formation of pluripotent stem cells inthe mammalian embryo depends on the POU transcription factor Oct4 [J]. Cell, 1998, 95(3) : 379-91.
[73] DRAPER J S, SMITH K, GOKHALE P, et al. Recurrent gain of chromosomes 17q and 12 incultured human embryonic stem cells [J]. Nat Biotechnol, 2004, 22(1) : 53-4.
[74] SHI G, JIN Y. Role of Oct4 in maintaining and regaining stem cell pluripotency [J]. Stem cellresearch & therapy, 2010, 1(5) : 39.
[75] ZEINEDDINE D, HAMMOUD A A, MORTADA M, et al. The Oct4 protein: more than a magicstemness marker [J]. American journal of stem cells, 2014, 3(2) : 74-82.
[76] WANG Z, ORON E, NELSON B, et al. Distinct lineage specification roles for NANOG, OCT4,and SOX2 in human embryonic stem cells [J]. Cell stem cell, 2012, 10(4) : 440-54.
[77] BOYER L A, LEE T I, COLE M F, et al. Core Transcriptional Regulatory Circuitry in HumanEmbryonic Stem Cells [J]. Cell, 2005, 122(6) : 947-56.
[78] YOUNG RICHARD A. Control of the Embryonic Stem Cell State [J]. Cell, 2011, 144(6) :940-54.
[79] KWOK C T D, LEUNG M H, QIN J, et al. The Forkhead box transcription factor FOXM1 isrequired for the maintenance of cell proliferation and protection against oxidative stress in humanembryonic stem cells [J]. Stem Cell Research, 2016, 16(3) : 651-61.
[80] An integrated encyclopedia of DNA elements in the human genome [J]. Nature, 2012, 489(7414) : 57-74.
[81] JOHNSON D S, MORTAZAVI A, MYERS R M, et al. Genome-wide mapping of in vivoprotein-DNA interactions [J]. Science (New York, NY) , 2007, 316(5830) : 1497-502.
[82] LANDT S G, MARINOV G K, KUNDAJE A, et al. ChIP-seq guidelines and practices of theENCODE and modENCODE consortia [J]. Genome research, 2012, 22(9) : 1813-31.
[83] SAVIC D, PARTRIDGE E C, NEWBERRY K M, et al. CETCh-seq: CRISPR epitope taggingChIP-seq of DNA-binding proteins [J]. Genome research, 2015, 25(10) : 1581-9.
[84] SZYMCZAK A L, WORKMAN C J, WANG Y, et al. Correction of multi-gene deficiency invivo using a single 'self-cleaving' 2A peptide-based retroviral vector [J]. Nat Biotechnol, 2004, 22(5) : 589-94.
[85] KIM J H, LEE S R, LI L H, et al. High cleavage efficiency of a 2A peptide derived from porcineteschovirus-1 in human cell lines, zebrafish and mice [J]. PloS one, 2011, 6(4) : e18556.
[86] KOONIN E V, WOLF Y I. Evolution of the CRISPR-Cas adaptive immunity systems inprokaryotes: models and observations on virus-host coevolution [J]. Molecular bioSystems, 2015, 11(1) : 20-7.
[87] FONFARA I, RICHTER H, BRATOVIČ M, et al. The CRISPR-associated DNA-cleavingenzyme Cpf1 also processes precursor CRISPR RNA [J]. Nature, 2016, 532(7600) : 517-21.
[88] NISHIMASU H, CONG L, YAN W X, et al. Crystal Structure of Staphylococcus aureus Cas9[J]. Cell, 2015, 162(5) : 1113-26.
[89] XIE Z, TAN G, DING M, et al. Foxm1 transcription factor is required for maintenance ofpluripotency of P19 embryonal carcinoma cells [J]. Nucleic acids research, 2010, 38(22) : 8027-38.
[90] CHEN Y, MENG L, YU Q, et al. The miR-134 attenuates the expression of transcription factorFOXM1 during pluripotent NT2/D1 embryonal carcinoma cell differentiation [J]. Experimental cellresearch, 2015, 330(2) : 442-50.
[91] UT Southwestern Medical Center. ChIP-seq [OL]. ( 2022-4-22 )
[2022-4-22].https://www.utsouthwestern.edu/labs/bioinformatics-lab/analysis/chip-seq/.
[92] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memoryrequirements [J]. Nature methods, 2015, 12(4) : 357-60.

所在学位评定分委会
生物系
国内图书分类号
Q75
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343131
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张倩. FOXM1 在人胚胎干细胞基因组中的结合位点研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930125-张倩-生物系.pdf(4588KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张倩]的文章
百度学术
百度学术中相似的文章
[张倩]的文章
必应学术
必应学术中相似的文章
[张倩]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。