[1] Dickson A N, Abourayana H M, Dowling D P. 3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication—A review[J]. Polymers, 2020, 12(10): 2188.
[2] Das A, Chatham C A, Fallon J J, et al. Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers[J]. Additive Manufacturing, 2020, 34: 101218.
[3] Chang B, Li X, Parandoush P, et al. Additive manufacturing of continuous carbon fiber reinforced poly-ether-ether-ketone with ultrahigh mechanical properties[J]. Polymer Testing, 2020, 88: 106563.
[4] 吴波. 聚丙烯腈基碳纤维的表面修饰及复合性能研究[D].天津工业大学,2017.
[5] Andideh M, Esfandeh M. Statistical optimization of treatment conditions for the electrochemical oxidation of PAN-based carbon fiber by response surface methodology: Application to carbon fiber/epoxy composite[J]. Composites Science and Technology, 2016, 134: 132-143.
[6] 刘保英, 王孝军, 杨杰, 等. 碳纤维表面改性研究进展[J]. 化学研究, 2015, 26(2): 111-120.
[7] 关蓉波, 杨永岗, 郑经堂, 等. 炭纤维乳液上浆剂[J]. 新型炭材料, 2002, 17(3): 49-51.
[8] Eyckens D J, Servinis L, Scheffler C, et al. Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers[J]. Journal of Materials Chemistry A, 2018, 6(10): 4504-4514.
[9] Ezekiel H B, Sharp D, Villalba M M, et al. Laser-anodised carbon fibre: Coupled activation and patterning of sensor substrates[J]. Journal of Physics and Chemistry of Solids, 2008, 69(11): 2932-2935.
[10] 屈李端, 陈书华, 沈镇, 等. 连续 CF/PEEK 预浸料制造技术研究进展[J]. 航空制造技术, 2020, 63(5): 87-92.
[11] 孙宝磊, 陈平, 李伟, 等. 先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术[J]. 纤维复合材料, 2009, 26(1): 43-48.
[12] 李学宽, 肇研, 王凯, 等. 热熔法制备连续纤维增强热塑性预浸料的浸渍模型和研究进展[J]. 航空制造技术, 2018, 61(14): 74-78.
[13] 孙宝磊, 陈平, 李伟, 等. 先进热塑性树脂基复合材料预浸料的制备及纤维缠绕成型技术[J]. 纤维复合材料, 2009, 26(1): 43-48.
[14] 王荣国, 刘文博, 张东兴, 等. 连续玻璃纤维增强热塑性复合材料工艺及力学性能的研究[J]. 航空材料学报, 2001, 21(2): 44-47.
[15] Nygård P, Gustafson C G. CONTINUOUS GLASS FIBER-POLYPROPYLENE COMPOSITES MADE BY MELT IMPREGNATION[M]//FRC 2000–Composites for the Millennium. Woodhead Publishing, 2000: 183-190.
[16] Hou M, Ye L, Mai Y. Advances in processing of continuous fibre reinforced composites with thermoplastic matrix[J]. Plastics, Rubber & Composites Processing and Appl., 1995, 5(23): 279-293.
[17] Li J. Interfacial studies on the ozone and air‐oxidation‐modified carbon fiber reinforced PEEK composites[J]. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 2009, 41(4): 310-315.
[18] Yapıcı U, Pan L, Xu F, et al. Effect of functional groups on interfacial adhesion properties of PEEK/carbon fiber composites[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 598: 66-72.
[19] Hassan E, Elagib T, Memon H, et al. Surface modification of carbon fibers by grafting peek-nh2 for improving interfacial adhesion with polyetheretherketone[J]. Materials, 2019, 12(5): 778.
[20] Jang J, Kim H. Improvement of carbon fiber/PEEK hybrid fabric composites using plasma treatment[J]. Polymer composites, 1997, 18(1): 125-132.
[21] Mao J, Pan Y, Ding J. Tensile mechanical characteristics of CF/PEEK biocomposites with different surface modifications[J]. Micro & Nano Letters, 2019, 14(3): 263-268.
[22] Giraud I, Franceschi S, Perez E, et al. Influence of new thermoplastic sizing agents on the mechanical behavior of poly (ether ketone ketone)/carbon fiber composites[J]. Journal of Applied Polymer Science, 2015, 132(38).
[23] Hassan E A M, Ge D, Yang L, et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 155-160.
[24] Hassan E A M, Ge D, Zhu S, et al. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105613.
[25] Zhang S, Mu J, Ren D, et al. Influence of lubricant on the properties of poly (ether ether ketone) and poly (ether ether ketone)/carbon fiber composites[J]. Macromolecular Research, 2010, 18(12): 1168-1173.
[26] Hu J, Yan F, Liu H, et al. Water-based PEKC-COOH sizing agent for enhancing the interfacial adhesion of carbon fiber/polyether-ether-ketone composites[J]. Composites Part B: Engineering, 2021, 225: 109279.
[27] Wang S, Yang Y, Mu Y, et al. Synergy of electrochemical grafting and crosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J]. Composites Science and Technology, 2021, 203: 108562.
[28] Su Y, Zhang S, Zhang X, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly (ether ether ketone) multiscale composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 89-98.
[29] Lyu H, Jiang N, Li Y, et al. Enhanced interfacial and mechanical properties of carbon fiber/PEEK composites by hydroxylated PEEK and carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106364.
[30] Lyu H, Jiang N, Hu J, et al. Preparing water-based phosphorylated PEEK sizing agent for CF/PEEK interface enhancement[J]. Composites Science and Technology, 2022, 217: 109096.
[31] Liu H, Zhao Y, Li N, et al. Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification[J]. Journal of Materials Research and Technology, 2019, 8(6): 6289-6300.
[32] Chen J, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface[J]. Composites Science and Technology, 2018, 154: 175-186.
[33] Wang X, Huang Z, Lai M, et al. Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers[J]. Applied Surface Science, 2020, 510: 145400.
[34] Lu W B, Wang C G, Yuan H, et al. Liquid-phase oxidation modification of carbon fiber surface[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 430: 2008-2012.
[35] Asai T, Ohara T, Tanaka T, et al. Method of manufacturing continuous fiber-reinforced thermoplastic prepregs: U.S. Patent 5,529,652[P]. 1996-6-25.
[36] Nygard P, Gustafson C G. Continuous glass fiber–polypropylene composites made by melt impregnation: influence of processing method[J]. Journal of Thermoplastic Composite Materials, 2004, 17(2): 167-184.
[37] 中国航空工业总公司第六二一研究所.静电预浸处理设备及工艺方法:中国,CN1107096A[P].1995–08–23.
[38] 恩尼彻姆公司.用于制造含有连续纤维的柔性热塑性复合丝的工艺:中国, CN1065008C[P].1995–09–04.
[39] 李长城.连续纤维增强塑料预浸料的制造方法及其所用的浸渍模具:中国, CN101439586A[P].2008–12–18.
[40] 上海杰事杰新材料股份有限公司.连续纤维增强热塑性复合材料预浸带的制备方法及设备:中国,CN101856872A[P].2009–04–08.
[41] 中国海洋石油总公司.连续长纤维增强热塑性树脂及其制备方法与成型设备:中国,CN102729483A[P].2012–10–17.
[42] 辽宁辽杰科技有限公司.一种连续碳纤维增强热塑性预浸带的制备方法:中国,CN103158209A[P].2013–06–19.
[43] 金发科技股份有限公司.连续长纤维增强热塑性树脂成型用的熔融浸渍机头及方法:中国,CN102848489A[P].2013–01–02.
[44] 台州市家得宝日用品有限公司.连续纤维增强热塑性复合材料预浸带的制造设备:中国, CN202242003U[P].2012–05–30.
修改评论