中文版 | English
题名

顺磁相变过程中电子结构的第一性原理研究

其他题名
A FIRST-PRINCIPLES INVESTIGATION OF THEELECTRONIC STRUCTURES DURING THEPARAMAGNETIC PHASE TRANSITION
姓名
姓名拼音
ZHAO Yufei
学号
11930044
学位类型
硕士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
刘奇航
导师单位
物理系
论文答辩日期
2022-05-13
论文提交日期
2022-06-29
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

研究磁性量子材料的关键之一是磁相变过程,其中最常见的现象是低温磁有序相向高温顺磁相的转变。对顺磁相的透彻理解有助于我们加深对量子磁体的认识,尤其是随机分布的磁矩和不同局部环境所带来的对称性破缺效应。也正因为如此,顺磁相的理论处理是不简单的;更重要的问题是,这类含有局域电子的“关联固体”在理论上能否用单电子平均场近似合理描述。目前对这类材料的绝大多数计算模拟是通过选取非磁构型下的最小单胞,然后赋以无磁或磁有序构型来完成的,因此一个位点与其近邻单胞的相应位点是完全等价的(即一种“单基元描述”)。虽然这样的近似捕捉到了顺磁相的一些部分特征,但是在许多绝缘材料中,实验确认了顺磁相变前后不发生电子能隙闭合,而无磁单基元描述却未能重现它。其中的关键因素是,局域磁矩的存在改变了局部对称性,从而移除简并同时打开了能隙。在单基元描述下,由于受限单胞引起的高对称性导致了电子轨道半填充,从而产生了与实验严重冲突的金属态。因此,为了正确描述顺磁相,局部自旋导致的对称性破缺必须被严格考虑在内。 在本工作中,我们应用密度泛函理论框架内的两种不同方法,即“单基元描述”和近期由 Zunger 等人开发的“多基元描述”,来研究由温度驱动的顺磁相变中电子结构的变化。通过综合对比体系总能量、对称性、能带色散和带隙,我们解释了正确处理顺磁相的必要性。本文所介绍的例子主要集中在近期受到广泛关注的拓扑材料和低维磁体,包括 Co3Sn2S2、 MnBi2Te4、 MnTe、 RuCl3 和 EuIn2As2等。对于泡利顺磁相,自旋磁矩的消失使得非磁性的单基元描述可以给出合理的结果;而对于局域磁矩无序分布的顺磁相,基于足够大超晶胞结构的多基元描述,可以将不同局域环境对电子结构的影响纳入考虑,例如几何无序导致的对称性降低。这样的多自由度表示可以提供合理的顺磁能带特征和总能量,与实验测量结果进行直接对比。我们的工作在原子水平上为局部磁矩诱导的顺磁相提供了可靠的电子结构描述,为理解新兴量子材料中磁相变或磁诱导拓扑相变过程铺平了道路。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-06
参考文献列表

[1] TRIMARCHI G, WANG Z, ZUNGER A. Polymorphous band structure model of gapping in the antiferromagnetic and paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO[J]. Physical Review B, 2018, 97(3): 035107.
[2] YU X, ONOSE Y, KANAZAWA N, et al. Real-space observation of a two-dimensional skyrmion crystal[J]. Nature, 2010, 465(7300): 901-904.
[3] ABRIKOSOV I A, PONOMAREVA A, STENETEG P, et al. Recent progress in simulations of the paramagnetic state of magnetic materials[J]. Current Opinion in Solid State and Materials Science, 2016, 20(2): 85-106.
[4] WEISS P. L’hypothèse du champ moléculaire et la propriété ferromagnétiqu[J]. J. Phys. Theor. Appl., 1907, 6(1): 661-690.
[5] MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models[J]. Physical Review Letters, 1966, 17(22): 1133.
[6] GONG C, LI L, LI Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657): 265-269.
[7] GONG C, ZHANG X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428): eaav4450.
[8] FURDYNA J K. Diluted magnetic semiconductors[J]. Journal of Applied Physics, 1988, 64(4): R29-R64.
[9] KITTEL C, MCEUEN P. Kittel’s Introduction to Solid State Physics[M]. John Wiley & Sons, 2018.
[10] HEISENBERG W. Zur theorie des ferromagnetismus[M]//Original Scientific Papers Wissenschaftliche Originalarbeiten. Springer, 1985: 580-597.
[11] RHODES P, WOHLFARTH E P. The effective Curie-Weiss constant of ferromagnetic metals and alloys[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1963, 273(1353): 247-258.
[12] MEIER W R, DU M H, OKAMOTO S, et al. Flat bands in the CoSn-type compounds[J]. Physical Review B, 2020, 102(7): 075148.
[13] TOKURA Y, YASUDA K, TSUKAZAKI A. Magnetic topological insulators[J]. Nature Reviews Physics, 2019, 1(2): 126-143.
[14] LU R, SUN H, KUMAR S, et al. Half-magnetic topological insulator with magnetizationinduced Dirac gap at a selected surface[J]. Physical Review X, 2021, 11(1): 011039.
[15] CHEN Y, XU L, LI J, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi 2 Te 4[J]. Physical Review X, 2019, 9(4): 041040.
[16] STONER E C. Collective electron specific heat and spin paramagnetism in metals[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1936, 154 (883): 656-678
[17] STONER E C. Collective electron ferromagnetism[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938, 165(922): 372-414.
[18] CHEN B, YANG J, WANG H, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2[J]. Journal of the Physical Society of Japan, 2013, 82(12): 124711.
[19] LIU H, JIANG H, SUN Q F, et al. Dephasing effect on backscattering of helical surface states in 3D topological insulators[J]. Physical Review Letters, 2014, 113(4): 046805.
[20] RUBAN A V, ABRIKOSOV I A. Configurational thermodynamics of alloys from first principles: effective cluster interactions[J]. Reports on Progress in Physics, 2008, 71(4): 046501.
[21] GYORFFY B, PINDOR A, STAUNTON J, et al. A first-principles theory of ferromagneticphase transitions in metals[J]. Journal of Physics F: Metal Physics, 1985, 15(6): 1337.
[22] HELLSVIK J, SKUBIC B, NORDSTRÖM L, et al. Dynamics of diluted magnetic semiconductors from atomistic spin-dynamics simulations: Mn-doped GaAs[J]. Physical Review B, 2008,78(14): 144419.
[23] KOTLIAR G, SAVRASOV S Y, HAULE K, et al. Electronic structure calculations with dynamical mean-field theory[J]. Reviews of Modern Physics, 2006, 78(3): 865.
[24] MATTHEISS L. Electronic Structure of the 3 d Transition-Metal Monoxides. I. Energy-BandResults[J]. Physical Review B, 1972, 5(2): 290.
[25] MATTHEISS L. Electronic Structure of the 3 d Transition-Metal Monoxides. II. Interpretation[J]. Physical Review B, 1972, 5(2): 306.
[26] MALYI O I, ZUNGER A. False metals, real insulators, and degenerate gapped metals[J]. Applied Physics Reviews, 2020, 7(4): 041310.
[27] RIVADULLA F, BAÑOBRE-LÓPEZ M, QUINTELA C X, et al. Reduction of the bulk modulusat high pressure in CrN[J]. Nature materials, 2009, 8(12): 947-951.
[28] HUBBARD J. The magnetism of iron[J]. Physical Review B, 1979, 19(5): 2626.
[29] HUBBARD J. Magnetism of iron. II[J]. Physical Review B, 1979, 20(11): 4584.
[30] HUBBARD J. Magnetism of nickel[J]. Physical Review B, 1981, 23(11): 5974.
[31] HASEGAWA H. Single-site functional-integral approach to itinerant-electron ferromagnetism[J]. Journal of the Physical Society of Japan, 1979, 46(5): 1504-1514.
[32] HASEGAWA H. Single-Siet Spin Fluctuation Theory of Itinerant-Electron Systems with Narrow Bands[J]. Journal of the Physical Society of Japan, 1980, 49(1): 178-188.
[33] ZUNGER A, WEI S H, FERREIRA L, et al. Special quasirandom structures[J]. Physical reviewletters, 1990, 65(3): 353.
[34] ALLING B, MARTEN T, ABRIKOSOV I. Effect of magnetic disorder and strong electroncorrelations on the thermodynamics of CrN[J]. Physical Review B, 2010, 82(18): 184430.
[35] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln[J]. Annalen der physik, 1927,389(20): 457-484.
[36] HARTREE D R. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods[C]//Mathematical Proceedings of the Cambridge Philosophical Society: volume 24. Cambridge university press, 1928: 89-110.
[37] SLATER J C. The theory of complex spectra[J]. Physical Review, 1929, 34(10): 1293.
[38] FOCK V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J].Zeitschrift für Physik, 1930, 61(1): 126-148.
[39] HARTREE D R, HARTREE W. Self-consistent field, with exchange, for beryllium[J]. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935,150(869): 9-33.
[40] THOMAS L H. The calculation of atomic fields[C]//Mathematical proceedings of the Cambridge philosophical society: volume 23. Cambridge University Press, 1927: 542-548.
[41] FERMI E. Un metodo statistico per la determinazione di alcune priorieta dell’ atome[J]. Rend.Accad. Naz. Lincei, 1927, 6(602-607): 32.
[42] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical review, 1964, 136(3B):B864.
[43] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J].Physical review, 1965, 140(4A): A1133.
[44] LEE J G. Computational materials science: an introduction[M]. CRC press, 2016.
[45] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximationsfor many-electron systems[J]. Physical Review B, 1981, 23(10): 5048.
[46] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical review B, 1992, 45(23): 13244.
[47] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Physicalreview B, 1992, 46(11): 6671.
[48] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical review letters, 1996, 77(18): 3865.
[49] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. The Journal of chemicalphysics, 2006, 125(22): 224106.
[50] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Ab initio calculation of vibrationalabsorption and circular dichroism spectra using density functional force fields[J]. The Journalof physical chemistry, 1994, 98(45): 11623-11627.
[51] MARDIROSSIAN N, HEAD-GORDON M. 𝜔B97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designedby a survival-of-the-fittest strategy[J]. Physical Chemistry Chemical Physics, 2014, 16(21):9904-9924.
[52] CONNOLLY J, WILLIAMS A. Density-functional theory applied to phase transformations intransition-metal alloys[J]. Physical Review B, 1983, 27(8): 5169.
[53] BOYKIN T B, KLIMECK G. Practical application of zone-folding concepts in tight-bindingcalculations[J]. Physical Review B, 2005, 71(11): 115215.
[54] BOYKIN T B, KHARCHE N, KLIMECK G, et al. Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations[J]. Journal of Physics: Condensed Matter,2007, 19(3): 036203.
[55] KRESSE G, FURTHMÜLLER J. Effciency of ab-initio total energy calculations for metalsand semiconductors using a plane-wave basis set[J]. Computational materials science, 1996, 6(1): 15-50.
[56] KRESSE G, FURTHMÜLLER J. Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical review B, 1996, 54(16): 11169.
[57] VAN DE WALLE A. Multicomponent multisublattice alloys, nonconfigurational entropy andother additions to the Alloy Theoretic Automated Toolkit[J]. Calphad, 2009, 33(2): 266-278.
[58] VAN DE WALLE A, TIWARY P, DE JONG M, et al. Effcient stochastic generation of specialquasirandom structures[J]. Calphad, 2013, 42: 13-18.
[59] MEDEIROS P V, STAFSTRÖM S, BJÖRK J. Effects of extrinsic and intrinsic perturbationson the electronic structure of graphene: Retaining an effective primitive cell band structure byband unfolding[J]. Physical Review B, 2014, 89(4): 041407.
[60] MEDEIROS P V, TSIRKIN S S, STAFSTRÖM S, et al. Unfolding spinor wave functions andexpectation values of general operators: Introducing the unfolding-density operator[J]. PhysicalReview B, 2015, 91(4): 041116.
[61] MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric andmorphology data[J]. Journal of applied crystallography, 2011, 44(6): 1272-1276.
[62] WANG V, XU N, LIU J C, et al. VASPKIT: A user-friendly interface facilitating high-throughputcomputing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267:108033.
[63] CANO J, BRADLYN B, WANG Z, et al. Building blocks of topological quantum chemistry:Elementary band representations[J]. Physical Review B, 2018, 97(3): 035139.
[64] HUNTER J D. Matplotlib: A 2D graphics environment[J]. Computing in science & engineering,2007, 9(03): 90-95.
[65] YAN B, FELSER C. Topological materials: Weyl semimetals[J]. Annual Review of CondensedMatter Physics, 2017, 8: 337-354.
[66] ZOU J, HE Z, XU G. The study of magnetic topological semimetals by first principles calculations[J]. npj Computational Materials, 2019, 5(1): 1-19.
[67] BERNEVIG B A, FELSER C, BEIDENKOPF H. Progress and prospects in magnetic topological materials[J]. Nature, 2022, 603(7899): 41-51.
[68] MURAKAMI S, ISO S, AVISHAI Y, et al. Tuning phase transition between quantum spin Halland ordinary insulating phases[J]. Physical Review B, 2007, 76(20): 205304.
[69] MURAKAMI S. Phase transition between the quantum spin Hall and insulator phases in 3D:emergence of a topological gapless phase[J]. New Journal of Physics, 2007, 9(9): 356.
[70] MURAKAMI S, KUGA S I. Universal phase diagrams for the quantum spin Hall systems[J].Physical Review B, 2008, 78(16): 165313.
[71] FANG Z, NAGAOSA N, TAKAHASHI K S, et al. The anomalous Hall effect and magneticmonopoles in momentum space[J]. Science, 2003, 302(5642): 92-95.
[72] HALDANE F. Berry curvature on the fermi surface: Anomalous hall effect as a topologicalfermi-liquid property[J]. Physical review letters, 2004, 93(20): 206602.
[73] XIAO D, YAO Y, FANG Z, et al. Berry-phase effect in anomalous thermoelectric transport[J].Physical review letters, 2006, 97(2): 026603.
[74] WANG X, VANDERBILT D, YATES J R, et al. Fermi-surface calculation of the anomalousHall conductivity[J]. Physical Review B, 2007, 76(19): 195109.
[75] BURKOV A. Anomalous Hall effect in Weyl metals[J]. Physical review letters, 2014, 113(18):187202.
[76] WAN X, TURNER A M, VISHWANATH A, et al. Topological semimetal and Fermi-arc surfacestates in the electronic structure of pyrochlore iridates[J]. Physical Review B, 2011, 83(20):205101.
[77] XU G, WENG H, WANG Z, et al. Chern semimetal and the quantized anomalous Hall effect inHgCr 2 Se 4[J]. Physical review letters, 2011, 107(18): 186806.
[78] HUANG X, ZHAO L, LONG Y, et al. Observation of the chiral-anomaly-induced negativemagnetoresistance in 3D Weyl semimetal TaAs[J]. Physical Review X, 2015, 5(3): 031023.
[79] LV B, WENG H, FU B, et al. Experimental discovery of Weyl semimetal TaAs[J]. PhysicalReview X, 2015, 5(3): 031013.
[80] WANG Z, WENG H, WU Q, et al. Three-dimensional Dirac semimetal and quantum transportin Cd 3 As 2[J]. Physical Review B, 2013, 88(12): 125427.
[81] LIU Z, JIANG J, ZHOU B, et al. A stable three-dimensional topological Dirac semimetalCd3As2[J]. Nature materials, 2014, 13(7): 677-681.
[82] LIU Z, ZHOU B, ZHANG Y, et al. Discovery of a three-dimensional topological Diracsemimetal, Na3Bi[J]. Science, 2014, 343(6173): 864-867.
[83] LIU E, SUN Y, KUMAR N, et al. Giant anomalous Hall effect in a ferromagnetic kagome-latticesemimetal[J]. Nature physics, 2018, 14(11): 1125-1131.
[84] WANG Q, XU Y, LOU R, et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions[J]. Nature communications, 2018, 9(1): 1-8.
[85] BLÖCHL P E. Projector augmented-wave method[J]. Physical review B, 1994, 50(24): 17953.
[86] WEIHRICH R, ANUSCA I. Half antiperovskites. III. crystallographic and electronic structureeffects in Sn2- xInxCo3S2[J]. Zeitschrift für anorganische und allgemeine Chemie, 2006, 632(8-9): 1531-1537.
[87] SCHNELLE W, LEITHE-JASPER A, ROSNER H, et al. Ferromagnetic ordering and halfmetallic state of Sn 2 Co 3 S 2 with the shandite-type structure[J]. Physical Review B, 2013, 88(14): 144404.
[88] VAQUEIRO P, SOBANY G G. A powder neutron diffraction study of the metallic ferromagnetCo3Sn2S2[J]. Solid state sciences, 2009, 11(2): 513-518.
[89] YANG R, ZHANG T, ZHOU L, et al. Magnetization-induced band shift in ferromagnetic Weylsemimetal Co 3 Sn 2 S 2[J]. Physical Review Letters, 2020, 124(7): 077403.
[90] ZHAO Y, YAO Q, LIU P, et al. Polymorphous density-functional description of paramagneticphases of quantum magnets[J]. arXiv preprint arXiv:2101.02539, 2021.
[91] CHEN X Y, LONG M Q, WANG Y P. Paramagnetic phases of two-dimensional magneticmaterials[J]. Physical Review B, 2020, 102(21): 214417.
[92] MOTT N F. Metal-insulator transition[J]. Reviews of Modern Physics, 1968, 40(4): 677.
[93] FLEISHMAN L, ANDERSON P. Interactions and the Anderson transition[J]. Physical ReviewB, 1980, 21(6): 2366.
[94] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators: HubbardU instead of Stoner I[J]. Physical Review B, 1991, 44(3): 943.
[95] ZHANG D, SHI M, ZHU T, et al. Topological axion states in the magnetic insulator MnBi 2 Te4 with the quantized magnetoelectric effect[J]. Physical review letters, 2019, 122(20): 206401.
[96] YIN G, YU J X, LIU Y, et al. Planar Hall effect in antiferromagnetic MnTe thin films[J]. Physicalreview letters, 2019, 122(10): 106602.
[97] KIM H S, CATUNEANU A, KEE H Y, et al. Kitaev magnetism in honeycomb RuCl 3 withintermediate spin-orbit coupling[J]. Physical Review B, 2015, 91(24): 241110.
[98] XU Y, SONG Z, WANG Z, et al. Higher-order topology of the axion insulator EuIn 2 As 2[J].Physical review letters, 2019, 122(25): 256402.
[99] COCOCCIONI M, DE GIRONCOLI S. Linear response approach to the calculation of theeffective interaction parameters in the LDA+ U method[J]. Physical Review B, 2005, 71(3):035105.
[100] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. TheJournal of chemical physics, 2010, 132(15): 154104.
[101] KADUK B, KOWALCZYK T, VAN VOORHIS T. Constrained density functional theory[J].Chemical reviews, 2012, 112(1): 321-370.
[102] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation ofan antiferromagnetic topological insulator[J]. Nature, 2019, 576(7787): 416-422.
[103] GONG Y, GUO J, LI J, et al. Experimental realization of an intrinsic magnetic topologicalinsulator[J]. Chinese Physics Letters, 2019, 36(7): 076801.
[104] LI J, LI Y, DU S, et al. Intrinsic magnetic topological insulators in van der Waals layeredMnBi2Te4-family materials[J]. Science Advances, 2019, 5(6): eaaw5685.
[105] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367(6480): 895-900.
[106] LIU C, WANG Y, LI H, et al. Robust axion insulator and Chern insulator phases in a twodimensional antiferromagnetic topological insulator[J]. Nature materials, 2020, 19(5): 522-527.
[107] MONG R S, ESSIN A M, MOORE J E. Antiferromagnetic topological insulators[J]. PhysicalReview B, 2010, 81(24): 245209.
[108] HAO Y J, LIU P, FENG Y, et al. Gapless surface Dirac cone in antiferromagnetic topologicalinsulator MnBi 2 Te 4[J]. Physical Review X, 2019, 9(4): 041038.
[109] ZHAO Y, LIU Q. Routes to realize the axion-insulator phase in MnBi2Te4 (Bi2Te3) n family[J]. Applied Physics Letters, 2021, 119(6): 060502.
[110] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel ternary layered manganesebismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J]. Journal ofAlloys and Compounds, 2019, 789: 443-450.
[111] WU J, LIU F, LIU C, et al. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3) n bulk crystal[J].Advanced Materials, 2020, 32(23): 2001815.
[112] KLIMOVSKIKH I I, OTROKOV M M, ESTYUNIN D, et al. Tunable 3D/2D magnetism in the(MnBi2Te4)(Bi2Te3) m topological insulators family[J]. npj Quantum Materials, 2020, 5(1):1-9.
[113] WU X, LI J, MA X M, et al. Distinct topological surface states on the two terminations of MnBi4 Te 7[J]. Physical Review X, 2020, 10(3): 031013.
[114] HOU F, YAO Q, ZHOU C S, et al. Te-vacancy-induced surface collapse and reconstruction inantiferromagnetic topological insulator MnBi2Te4[J]. ACS nano, 2020, 14(9): 11262-11272.
[115] CHEN W, ZHAO Y, YAO Q, et al. Koopmans’ theorem as the mechanism of nearly gaplesssurface states in self-doped magnetic topological insulators[J]. Physical Review B, 2021, 103(20): L201102.
[116] SHIKIN A M, ESTYUNIN D, KLIMOVSKIKH I I, et al. Nature of the Dirac gap modulationand surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4[J].Scientific Reports, 2020, 10(1): 1-13.
[117] KRIEGNER D, REICHLOVA H, GRENZER J, et al. Magnetic anisotropy in antiferromagnetichexagonal MnTe[J]. Physical Review B, 2017, 96(21): 214418.
[118] YOUNG S M, KANE C L. Dirac semimetals in two dimensions[J]. Physical review letters,2015, 115(12): 126803.
[119] WU W, LIU Y, LI S, et al. Nodal surface semimetals: Theory and material realization[J].Physical Review B, 2018, 97(11): 115125.
[120] SANDILANDS L J, TIAN Y, PLUMB K W, et al. Scattering Continuum and Possible Fractionalized Excitations in 𝛼- RuCl 3[J]. Physical review letters, 2015, 114(14): 147201.
[121] NASU J, KNOLLE J, KOVRIZHIN D L, et al. Fermionic response from fractionalization in aninsulating two-dimensional magnet[J]. Nature Physics, 2016, 12(10): 912-915.
[122] KASAHARA Y, OHNISHI T, MIZUKAMI Y, et al. Majorana quantization and half-integerthermal quantum Hall effect in a Kitaev spin liquid[J]. Nature, 2018, 559(7713): 227-231.
[123] FOULKES W, MITAS L, NEEDS R, et al. Quantum Monte Carlo simulations of solids[J].Reviews of Modern Physics, 2001, 73(1): 33.
[124] SCHOLLWÖCK U. The density-matrix renormalization group[J]. Reviews of modern physics,2005, 77(1): 259.
[125] LANDRON S, LEPETIT M B. Importance of t 2 g- e g hybridization in transition metal oxides[J]. Physical Review B, 2008, 77(12): 125106.
[126] YANG K, FAN F, WANG H, et al. VI 3: A two-dimensional Ising ferromagnet[J]. PhysicalReview B, 2020, 101(10): 100402.
[127] ZHOU X, LI H, WAUGH J, et al. Angle-resolved photoemission study of the Kitaev candidate𝛼- RuCl 3[J]. Physical Review B, 2016, 94(16): 161106.
[128] ZHANG Y, DENG K, ZHANG X, et al. In-plane antiferromagnetic moments and magneticpolaron in the axion topological insulator candidate EuIn 2 As 2[J]. Physical Review B, 2020,101(20): 205126.
[129] SATO T, WANG Z, TAKANE D, et al. Signature of band inversion in the antiferromagneticphase of axion insulator candidate EuIn 2 As 2[J]. Physical Review Research, 2020, 2(3):033342.
[130] MORIYA T. Recent progress in the theory of itinerant electron magnetism[J]. Journal of Magnetism and Magnetic Materials, 1979, 14(1): 1-46.

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/343146
专题理学院_物理系
推荐引用方式
GB/T 7714
赵宇飞. 顺磁相变过程中电子结构的第一性原理研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930044-赵宇飞-物理系.pdf(12937KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵宇飞]的文章
百度学术
百度学术中相似的文章
[赵宇飞]的文章
必应学术
必应学术中相似的文章
[赵宇飞]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。